1. Find the molarity of a $34 \mathrm{ppb} \mathrm{C}_{29} \mathrm{H}_{60}$ rainwater solution.
2. How many mL of a $1.0 \times 10^{4} \mathrm{ppm} \mathrm{CuCl} 2 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ solution are needed to make 500 mL of a solution that is $1.0 \times 10^{3} \mathrm{ppm}$ in Cu ?
3. How many mL of concentrated HCl are needed to make 500 mL of 0.250 M HCl ? Concentrated HCl is $37.2 \% \mathrm{w} / \mathrm{w} \mathrm{HCl}$ and has a density of $1.188 \mathrm{~g} / \mathrm{cm}^{3}$.
4. For the reaction $\mathrm{A}+2 \mathrm{~B} \longrightarrow \mathrm{P}$, if 0.751 moles of A are mixed with 1.43 moles of B , what is the limiting reagent and how much of the other remains unreacted?
5. For the reaction $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}-(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, how many grams of vinegar are required to react with 5.00 g of NaHCO_{3} ? Vinegar contains approximately $5 \% \mathrm{w} / \mathrm{w}$ acetic acid and its density is $1.00 \mathrm{~g} / \mathrm{mL}$.
6. Sketch a picture of a serial dilution scheme below. How is this different from a parallel dilution?
7. A bottle is labeled $56.2 \mathrm{ppm} \mathrm{FeCl}_{3}$. Express this concentration in $\mathrm{ppm} \mathrm{Fe}{ }^{3+}$ and in molarity.
