	Worksheet 9
1.	For a galvanic cell composed of a nickel electrode and a copper electrode:
	(a) Draw a picture of a galvanic cell composed of a nickel electrode and a copper electrode
	(b) Write the overall reaction for the whole system.
	(c) Write the half reactions for each cell as reductions.
	(1) 1771 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(d) Which one should be written as an oxidation?(e) Calculate the standard cell potential.
	(c) Calculate the standard con potential.
2.	Describe how you will pick an anode and cathode for a given cell with only a table of reduction potentials.
3.	Electrons flow (from/to) the anode and (from/to) the cathode.
4.	The anode (loses/gains) mass while the cathode (loses/gains) mass.
5.	Which way will anions from the salt bridge flow?
	(a) From anode to cathode
	(b) From cathode to anode
6.	Write the Nernst equation.
7.	A voltaic cell is constructed with two Zn ²⁺ –Zn electrodes. The two compartments have [Zn ²⁺] = 1.3 M and [Zn ²⁺] = 1.60×10^{-2} M.
	(a) Which electrode is the anode of the cell?
	i. 1.3 M ii. $1.60 \times 10^{-2} \text{ M}$
	(b) What is the standard emf of the cell? (emf = E_{cell})

- 8. A voltaic cell is constructed using the following reaction at 298K: ${\rm Zn}(s) + {\rm Ni}^{2+}(aq) \longrightarrow {\rm Zn}^{2+}(aq) + {\rm Ni}(s).$
 - (a) What is the emf of the cell under standard conditions?
 - (b) What is the emf of the cell when $[\mathrm{Ni}^{2+}]=3.60\mathrm{M}$ and $[\mathrm{Zn}^{2+}]=0.110\mathrm{M}$?

(c) What is the emf of the cell when $[\mathrm{Ni}^{2+}]=0.220\mathrm{M}$ and $[\mathrm{Zn}^{2+}]=0.990\mathrm{M}$?