Worksheet 6

1. Calculate the pH of a $0.200 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution given $\mathrm{K}_{b}=1.8 \times 10^{-5}$.
2. For the solution created using 20 mL of 0.10 M HF and 0.050 g of NaF , calculate the pH assuming the K_{a} of HF is 3.5×10^{-4}.
3. Calculate the pH of the solution resulting from titrating 30 mL of 0.10 M HOBr with 24 mL of 0.10 M NaOH assuming the K_{a} of HOBr is 2.0×10^{-9}.
4. Sketch a titration curve for the titration of 30 mL of the 0.25 M diprotic acid HA with 0.25 M NaOH by calculating the following ($\mathrm{K}_{a 1}=5.9 \times 10^{-2}$ and $\mathrm{K}_{a 2}=6.4 \times 10^{-5}$):
(a) The initial pH
(b) The pH of both equivalence points
(c) The pH of both half-equivalence points
