Worksheet 1

- 1. All of the following affect the rate of a reaction except
 - a. Concentration of reactants
 - b. Surface area of reactants
 - c. Temperature
 - d. The presence of a catalyst
 - e. None of the above
- 2. For the reaction N2 + 3 H2 \rightarrow 2 NH3, the
 - a. rate of reaction = _____ rate of production of NH3
 - b. rate of reaction = _____ rate of consumption of H2

Use the following table for questions 3-4

Time (s)	[A] (M)
0	0.165
200	0.112
500	0.054
800	0.028
1200	0.015
1500	0.013

- 3. What is the average reaction rate between 0 and 1500 seconds?
- 4. What is the instantaneous reaction rate at 800 seconds?
- 5. At a certain time in a reaction, substance A is disappearing at a rate of 2.0×10−2 M/s, substance B is appearing at a rate of 4.0×10−2 M/s, and substance C is appearing at a rate of 8.0×10−2 M/s. Propose a chemical equation relating the three substances.
- 6. Consider the reaction: 3I- + IO2- + 4H+ → 2 I2 + 2H2O. The reaction is first order with respect to I-, second order with respect to H+ and fifth order overall. What is the rate law?
- 7. If the concentration of IO2- were doubled, what would happen to the reaction rate?
- Considering the reaction 2 UO2(+) + 4H(+) → U(4+) + UO2(2+) + 2H2O and the initial rate data below, derive the rate law for the reaction and find the rate constant k with the correct units.

Experiment	Initial	Initial	Initial Rate of
	Concentration	Concentration H(+)	Reaction
	UO2(+)		
1	0.0012	0.22	4.12 x 10^-5
2	0.0012	0.35	6.55 x 10^-5
3	0.0030	0.35	4.10 x 10^-4

9. What are the units of the rate constant for Rate=k[CHCl3][Cl2]^3/2?

- 10. A certain reaction $X + Y \rightarrow Z$ is described as being second order in [X] and fourth order overall. Which of the following statements are true?
 - a. The rate law for the reaction is Rate = $k[X]^{2}[Y]$
 - b. If the concentration of X is increased by a factor of 1.5, the rate will increase by a factor of 2.25
 - c. If the concentration of Y is increased by a factor of 1.5, the rate will increase by a factor of 2.25

Question 8 Extension: What is the rate of disappearance of UO2(+) when $[UO2(+)] = 4.5 \times 10 - 2$ M and [H+] = 0.18 M? Assume the rate of reaction relates to U(4+).

Time (min)	[X](<i>M</i>)
0	0.467
1	0.267
2	0.187
3	0.144
4	0.117
5	0.099
6	0.085
7	0.075

- 1. Using the table above how would you decide the order of the reaction with respect to [X]? What is the order?
 - a. 0
 - b. 1
 - c. 2
- 2. Given that the rate constant for the decomposition of hypothetical compound X from part A is 1.15 M−1·min−1, calculate the concentration of X after 25.0 min.
- 3. What is the definition of half-life?
- 4. Calculate the half-life of potassium-43 assuming it follows second-order kinetics with a rate constant of 8.634 x 10⁻⁶ and starting with 2 M potassium.

- 5. Calculate the half-life of potassium-43 assuming it follows second-order kinetics with a rate constant of 8.634 x 10⁻⁶ and starting with 4 M potassium.
- 6. Calculate the half-life of potassium-43 assuming it follows first-order kinetics with a rate constant of 8.634×10^{-6} and starting with 2 M potassium.

Part 2

7. Calculate the half-life of potassium-43 assuming it follows first-order kinetics with a rate constant of 8.634×10^{-6} and starting with 4 M potassium.

8. Given the picture above, find the rate constant k assuming the reaction follows first-order kinetics.

9. At 25°C, the decomposition of dinitrogen pentoxide, N2O5(g), into NO2(g) and O2(g) follows first-order kinetics with k=4.3×10-4 s-1. A sample of N2O5with an initial pressure of 760 torr decomposes at 25°C until its partial pressure is 450 torr. How much time (in s) has elapsed?