Worksheet 1

1. All of the following affect the rate of a reaction except
a. Concentration of reactants
b. Surface area of reactants
c. Temperature
d. The presence of a catalyst
e. None of the above
2. For the reaction $\mathrm{N} 2+3 \mathrm{H} 2 \rightarrow 2 \mathrm{NH} 3$, the
a. rate of reaction $=$ \qquad rate of production of NH3
b. rate of reaction = \qquad rate of consumption of H 2 Use the following table for questions 3-4

Time (s)	$[\mathrm{A}](\mathrm{M})$
0	0.165
200	0.112
500	0.054
800	0.028
1200	0.015
1500	0.013

3. What is the average reaction rate between 0 and 1500 seconds?
4. What is the instantaneous reaction rate at 800 seconds?
5. At a certain time in a reaction, substance A is disappearing at a rate of $2.0 \times 10-2 \mathrm{M} / \mathrm{s}$, substance B is appearing at a rate of $4.0 \times 10-2 \mathrm{M} / \mathrm{s}$, and substance C is appearing at a rate of $8.0 \times 10-2 \mathrm{M} / \mathrm{s}$. Propose a chemical equation relating the three substances.
6. Consider the reaction: $3 \mathrm{I}-+\mathrm{IO} 2-+4 \mathrm{H}+\rightarrow 2 \mathrm{I} 2+2 \mathrm{H} 2 \mathrm{O}$. The reaction is first order with respect to $\mathrm{I}-$, second order with respect to $\mathrm{H}+$ and fifth order overall. What is the rate law?
7. If the concentration of IO2- were doubled, what would happen to the reaction rate?
8. Considering the reaction $2 \mathrm{UO} 2(+)+4 \mathrm{H}(+) \rightarrow \mathrm{U}(4+)+\mathrm{UO} 2(2+)+2 \mathrm{H} 2 \mathrm{O}$ and the initial rate data below, derive the rate law for the reaction and find the rate constant k with the correct units.

Experiment	Initial Concentration UO2 $(+)$	Initial Concentration $H(+)$	Initial Rate of Reaction
1	0.0012	0.22	$4.12 \times 10^{\wedge}-5$
2	0.0012	0.35	$6.55 \times 10^{\wedge}-5$
3	0.0030	0.35	$4.10 \times 10^{\wedge}-4$

9. What are the units of the rate constant for Rate $=\mathrm{k}[\mathrm{CHCl} 3][\mathrm{Cl} 2]^{\wedge} 3 / 2$?
10. A certain reaction $X+Y \rightarrow Z$ is described as being second order in $[X]$ and fourth order overall. Which of the following statements are true?
a. The rate law for the reaction is Rate $=k[\mathrm{X}]^{\wedge} 2[\mathrm{Y}]$
b. If the concentration of X is increased by a factor of 1.5 , the rate will increase by a factor of 2.25
c. If the concentration of Y is increased by a factor of 1.5 , the rate will increase by a factor of 2.25

Part 2

Question 8 Extension: What is the rate of disappearance of UO2(+)
when $[\mathrm{UO} 2(+)]=4.5 \times 10-2 \mathrm{M}$ and $[\mathrm{H}+]=0.18 \mathrm{M}$? Assume the rate of reaction relates to $\mathrm{U}(4+)$.

Time (min)	$[\mathrm{X}](M)$
0	0.467
1	0.267
2	0.187
3	0.144
4	0.117
5	0.099
6	0.085
7	0.075

1. Using the table above how would you decide the order of the reaction with respect to [X]? What is the order?
a. 0
b. 1
c. 2
2. Given that the rate constant for the decomposition of hypothetical compound X from part A is $1.15 \mathrm{M}-1 \cdot \mathrm{~min}-1$, calculate the concentration of X after 25.0 min .
3. What is the definition of half-life?
4. Calculate the half-life of potassium-43 assuming it follows second-order kinetics with a rate constant of $8.634 \times 10^{\wedge}-6$ and starting with 2 M potassium.
5. Calculate the half-life of potassium-43 assuming it follows second-order kinetics with a rate constant of $8.634 \times 10^{\wedge}-6$ and starting with 4 M potassium.
6. Calculate the half-life of potassium-43 assuming it follows first-order kinetics with a rate constant of $8.634 \times 10^{\wedge}-6$ and starting with 2 M potassium.
7. Calculate the half-life of potassium-43 assuming it follows first-order kinetics with a rate constant of $8.634 \times 10^{\wedge}-6$ and starting with 4 M potassium.

8. Given the picture above, find the rate constant k assuming the reaction follows firstorder kinetics.
9. At $25 \circ \mathrm{C}$, the decomposition of dinitrogen pentoxide, $\mathrm{N} 2 \mathrm{O} 5(\mathrm{~g})$, into $\mathrm{NO} 2(\mathrm{~g})$ and $02(\mathrm{~g})$ follows first-order kinetics with $\mathrm{k}=4.3 \times 10-4 \mathrm{~s}-1$. A sample of N 2 O 5 with an initial pressure of 760 torr decomposes at $25^{\circ} \mathrm{C}$ until its partial pressure is 450 torr. How much time (in s) has elapsed?
