Worksheet 13: Buffers

Objectives

- 1. Recognize how the molar concentrations of a weak acid and its conjugate base influence pH calculations
- 2. Calculate the pH of a buffer solution or the conjugate acid/base ratio based on the buffer pH

Key Questions

- 1. Given the pK_a of acetic acid is 4.8, what is the pH of a solution made by adding 0.02 moles of acetic acid to 1 L of water?
- 2. Calculate the pH of the solution from the previous problem after the addition of 0.008 moles of sodium hydroxide. Ignore any changes in volume due to the addition.
- 3. Calculate the pH of the solution above after the addition of 0.012 more moles of sodium hydroxide.
- 4. What are the limitations of the Henderson-Hasselbalch equation?
- 5. What is the ratio of NH_3/NH_4^+ necessary to produce a pH of 8.55? The K_b of ammonia is 1.8×10^{-5} .
- 6. Explain how you could create a buffer with pH 7.00 using phosphoric acid and sodium hydroxide given the K_a values for phosphoric acid are 7.5×10^{-3} , 6.2×10^{-8} , and 4.8×10^{-13} .