Worksheet 12: Acid-Base Distribution

Objectives

- 1. Describe how the molar concentrations of mono- and polyprotic weak acids and their conjugate bases vary with pH
- 2. Identify the principal species resulting from the dissociation of a weak acid at a given pH
- 3. Sketch and interpret ionic distribution graphs given appropriate pKa values

Key Questions

1. Sketch an acid-base distribution plot for hydrofluoric acid, given its pK_a is 3.17. Then, label the principal species at pH 3.00 and pH 7.00.

- 2. For the previous problem, what is true of the concentrations of HF and F^- where the lines cross? Write the K_a expression for the dissociation of HF in water. How can this expression be simplified at the pH where the lines cross?
- 3. For the triprotic acid, orthophosphoric acid, write out its three equilibria with water, and assign a pK_a value to each one. The three pK_a values are 12.15, 7.199, and 2.148. Use the equilibria and corresponding pK_{as} to sketch the acid-base distribution plot and identify the principal species at pH 4.000, pH 8.000, and pH 10.000.

- 4. For the previous problem, over what range is HPO_4^{2-} dominant?
- 5. Again looking at problem 3, what pH would be required to be sure that most of the phosphate present was in the PO_4^{3-} form?
- 6. Decide whether the following statement is true or false. If it is false, correct it to make it true. Statement: "For any weak acid, the acid form is the dominant species at pH values above 7.00 and its conjugate base is dominant at pH values below 7.00."