1. Write down the form of the rate law equation for two reactants A and B .
2. Write the ratio of two of these equations when there are different amounts of A but the same amount of B. You can use rate ${ }_{1}$ and $\left(A_{1}\right)$ for one equation and rate 2 and $\left(A_{2}\right)$ for the other.
3. Manipulate the equation from the previous part to solve for the order of A .
4. Use the equation derived above and the table below to obtain the rate law for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NOCl}(\mathrm{g})$. Remember to include the proper units for the rate constant.

Trial	$(\mathrm{NO})_{0}[\mathrm{M}]$	$\left(\mathrm{Cl}_{2}\right)_{0}[\mathrm{M}]$	Initial Rate $[\mathrm{M} / \mathrm{s}]$
1	0.10	0.10	3.00×10^{-3}
2	0.10	0.15	4.50×10^{-3}
3	0.15	0.10	6.75×10^{-3}

5. What is the overall order for this reaction?
6. Calculate the rate of reaction when the initial concentration of NO is 0.65 M and that of Cl_{2} is 1.10 M.
7. What will be the rate of production of NOCl for the initial concentrations given in the previous problem?
