Exam 3 Review

Distribution

- Describe how the molar concentrations of mono- and polyprotic weak acids and their conjugate bases vary with pH
- Identify the principal species resulting from the dissociation of a weak acid at a given pH
- $\bullet\,$ Sketch and interpret ionic distribution graphs given appropriate pK_a values
- 1. Sketch the acid-base distribution plot for sulfuric acid (H_2SO_4) below. Make sure to label the axes and identify the principal species at each point. The second K_a is 0.012. (This one is tricky!)
- 2. Calculate the pH of a 0.010 M sulfuric acid solution, given the fact that its second K_a is 0.012.
- 3. Sketch the acid-base distribution plot for arsenic acid (H₃AsO₄), given its three K_a values, 5.8×10^{-3} , 1.1×10^{-7} , and 3.2×10^{-12} .
- 4. Given the distribution plot below, determine which of the following acids it belongs to.
 - (a) Periodic acid, $K_{a1} = 2.00 \times 10^{-2}$, $K_{a2} = 5.00 \times 10^{-9}$
 - (b) Carbonic acid, $K_{a1} = 4.45 \times 10^{-7}$, $K_{a2} = 4.69 \times 10^{-11}$
 - (c) Fumaric acid, $K_{a1} = 8.85 \times 10^{-4}$, $K_{a2} = 3.21 \times 10^{-10}$

Buffers

- Recognize how the molar concentrations of a weak acid and its conjugate base influence pH calculations
- Calculate the pH of a buffer solution or the conjugate acid/base ratio based on the buffer pH
- 1. Describe two typical ways to make a buffer.
- 2. Show how the Henderson-Hasselbalch equation can be derived from the K_a expression for the dissociation of the weak acid HA.
- 3. Over what range is the Henderson-Hasselbalch approximation valid?
- 4. Calculate the pH of a buffer solution made by adding 0.12 moles of sodium lactate to 0.10 moles of lactic acid. The K_a of lactic acid is 1.4×10^{-4} .
- 5. True or False. Given two buffer solutions with equal concentrations of a weak acid and its conjugate base, the solution with the lower concentrations of the two components will be able to neutralize more hydrochloric acid.
- 6. What ratio of ammonium chloride to ammonia should be used to form a buffer with a pH of 9.27? The K_b of ammonia is 1.75×10^{-5} .

Titration

- Understand why titration curves have a particular shape and recognize the difference in the titration curves of acid/base titrations
- Describe how molar concentrations of a weak acid and its conjugate base vary with pH
- Identify the major species in solution and calculate the pH at various points during the titration
- 1. Sketch a general curve for the titration of a weak acid with a strong base. Be sure to label the axes correctly. How would the curve be different for the titration of a weak base with a strong acid?
- 2. On your graph above, circle the region where the Henderson-Hasselbalch equation is a useful approximation.

- 3. The following problems refer to the titration of 100 mL of the 0.10 M diprotic weak acid, malonic acid, with 0.20 M sodium hydroxide. K_{a1} for malonic acid is 1.5×10^{-3} , and K_{a2} is 2.0×10^{-6} .
 - (a) Calculate the pH before the addition of any sodium hydroxide.
 - (b) Calculate the pH after teh addition of 10 mL of sodium hydroxide.
 - (c) Calculate the pH after the addition of 25 mL of sodium hydroxide.
 - (d) Calculate the pH after the addition of 50 mL of sodium hydroxide.
 - (e) Calculate the pH after the addition of 65 mL of sodium hydroxide.
 - (f) Calculate the pH after the addition of 100 mL of sodium hydroxide.
 - (g) Calculate the pH after the addition of 150 mL of sodium hydroxide.

Redox and Electrochemistry

- For a given redox reaction, draw a galvanic cell and identify the cathode and anode
- Describe an experiment that will determine the relative strengths of a series of oxidizing agents
- 1. Propose an experiment for determining the strongest oxidizing agent of copper, zinc, mercury, and aluminum.
- 2. For the redox reaction $2 \operatorname{Fe}^{3+}(\operatorname{aq}) + 3 \operatorname{Ba}(\operatorname{s}) \longrightarrow 3 \operatorname{Ba}^{2+}(\operatorname{aq}) + 2 \operatorname{Fe}(\operatorname{s})$, write the half-reactions and label them as oxidation or reduction. Also, sketch the galvanic cell suggested by this reaction and label its necessary components.

- 3. What is the oxidizing agent in the reaction above? Explain.
- 4. Write the reaction above using cell notation.
- 5. Balance the redox reaction $MnO_4^{-}(aq) + C_2O_4^{2-}(aq) \longrightarrow Mn^{2+}(aq) + CO_2(aq)$.

Cell Potential and the Nernst Equation

- Identify the oxidizing and reducing agents based on their standard reduction potential
- Calculate the cell voltage
- Relate cell voltage to ΔG and equilibrium constant K
- Use Q to adjust cell voltage or reduction potential
- 1. As the reduction potential for a compound decreases, what happens to the oxidation potential of its reduced form?
- 2. What conditions define standard conditions, denoted by the $^{\circ}$ symbol?
- 3. Based on the cell potential measured for the cells below, what potential would you expect for the cell $Fe(s) | Fe^{2+}(aq) || Co^{2+}(aq) | Co(s)?$ $Co(s) | Co^{2+}(aq) || Cu^{2+}(aq) | Cu(s), E^{\circ} = 0.614 V$ $Fe(s) | Fe^{2+}(aq) || Cu^{2+}(aq) | Cu(s), E^{\circ} = 0.777 V$
- 4. Use the Nernst equation to calculate the cell potential of the cell $2 \operatorname{Ag}^+ + \operatorname{Ni}(s) \longrightarrow 2 \operatorname{Ag}(s) + \operatorname{Ni}^{2+}(aq)$. The concentration of silver is 0.50 M and that of nickel is 0.20 M at 298 K.
- 5. Which of the following reactions are spontaneous as written under standard conditions?
 - (a) $\operatorname{Zn}(s) + 2\operatorname{Fe}^{3+}(\operatorname{aq}) \longrightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{Fe}^{2+}$
 - (b) $\operatorname{Cu}(s) + 2 \operatorname{H}^+(aq) \longrightarrow \operatorname{Cu}^{2+}(aq) + \operatorname{H}_2(g)$
 - $(c) \ 2 \operatorname{Br}^-(aq) + I_2(s) \longrightarrow \operatorname{Br}_2(l) + 2 \operatorname{I}^-(aq)$

Selected Reduction Potentials

Half-Reaction	Standard Reduction Potential, E° (V)
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Zn}(\operatorname{s})$	-0.763
$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.250
$2 \mathrm{H^+(aq)} + 2 \mathrm{e^-} \longrightarrow \mathrm{H}_2(\mathrm{g})$	± 0.000
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.337
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.535
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.771
$Ag^+(aq) + e^- \longrightarrow Ag(s)$	+0.799
$\operatorname{Br}_2(l) + 2 e^- \longrightarrow 2 \operatorname{Br}^-(aq)$	+1.080