Optimization	

Quartic Force Field Training

Brent R. Westbrook

Fortenberry Patch

Quartic Force Field Training

Fortenberry Patch

Image: A matrix and a matrix

What is a quartic force field?

(日) (聖) (明) (明)

Quartic Force Field Training

≣ । ≣ । ∽ ९ ० Fortenberry Patch

Definition

A vector field that describes a force acting on a particle at various positions in space

Fortenberry Patch

What is a quartic force field?

The obvious

F = ma

Quartic Force Field Training

≣ । ≣ •ी ९० Fortenberry Patch

メロト メロト メヨト メヨ

What is a quartic force field?

The obvious F = ma

The more useful

$$F = -\nabla V = -\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right)$$

Quartic Force Field Training

E ► E ∽ ९ (Fortenberry Patch

イロト イヨト イヨト イヨ

How does this relate to us?

Figure: Potential vs displacement for a 1-D harmonic oscillator

< ロ > < 同 > < 三 > < 三

How does this relate to us?

Suppose we do not know the potential energy function for a molecule. How could we approximate it?

How does this relate to us?

Suppose we do not know the potential energy function for a molecule. How could we approximate it?

Quartic Force Field Training

How does this relate to us? Taylor series

Definition

An infinite sum of terms that are expressed in terms of the function's derivatives at a single point, a

$$f(x)_a \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots$$

Example $e_{a=0}^{x} \approx \frac{e^{0}}{0!} + \frac{e^{0}}{1!}(x-0) + \frac{e^{0}}{2!}(x-0)^{2} + \dots = 1 + x + \frac{x^{2}}{2} + \dots$

Quartic Force Field Training

Fortenberry Patch

What is a quartic force field?

You've probably seen this in all of our papers:

Definition

A quartic force field is a fourth-order Taylor series expansion of the potential energy portion of the internuclear Watson Hamiltonian

And this in some of them:

Equation

$$V = \frac{1}{2} \sum_{ij} F_{ij} \Delta_i \Delta_j + \frac{1}{6} \sum_{ijk} F_{ijk} \Delta_i \Delta_j \Delta_k + \frac{1}{24} \sum_{ijkl} F_{ijkl} \Delta_i \Delta_j \Delta_k \Delta_l$$

Let's expand the potential energy for the 1-D harmonic oscillator, V(r), about its equilibrium displacement r_{eq} , and let this be equal to zero.

$$V(r)_{r_{eq}} \approx \frac{1}{0!} V(r_{eq}) + \frac{1}{1!} \left(\frac{dV}{dr}\right)_{r_{eq}} (r - r_{eq}) + \frac{1}{2!} \left(\frac{d^2V}{dr^2}\right)_{r_{eq}} (r - r_{eq})^2 \\ + \frac{1}{3!} \left(\frac{d^3V}{dr^3}\right)_{r_{eq}} (r - r_{eq})^3 + \frac{1}{4!} \left(\frac{d^4V}{dr^4}\right)_{r_{eq}} (r - r_{eq})^4$$

What do we know about the first two of these terms?

Let's expand the potential energy for the 1-D harmonic oscillator, V(r), about its equilibrium displacement r_{eq} , and let this be equal to zero.

$$V(r)_{r_{eq}} \approx \frac{1}{0!} V(r_{eq}) + \frac{1}{1!} \left(\frac{dV}{dr}\right)_{r_{eq}} (r - r_{eq}) + \frac{1}{2!} \left(\frac{d^2V}{dr^2}\right)_{r_{eq}} (r - r_{eq})^2 + \frac{1}{3!} \left(\frac{d^3V}{dr^3}\right)_{r_{eq}} (r - r_{eq})^3 + \frac{1}{4!} \left(\frac{d^4V}{dr^4}\right)_{r_{eq}} (r - r_{eq})^4$$

What do we know about the first two of these terms?

The first cancels because we defined r_{eq} as our zero of potential

Let's expand the potential energy for the 1-D harmonic oscillator, V(r), about its equilibrium displacement r_{eq} , and let this be equal to zero.

$$V(r)_{r_{eq}} \approx \frac{1}{0!} V(r_{eq}) + \frac{1}{1!} \left(\frac{dV}{dr}\right)_{r_{eq}} (r - r_{eq}) + \frac{1}{2!} \left(\frac{d^2V}{dr^2}\right)_{r_{eq}} (r - r_{eq})^2 + \frac{1}{3!} \left(\frac{d^3V}{dr^3}\right)_{r_{eq}} (r - r_{eq})^3 + \frac{1}{4!} \left(\frac{d^4V}{dr^4}\right)_{r_{eq}} (r - r_{eq})^4$$

What do we know about the first two of these terms?

- The first cancels because we defined r_{eq} as our zero of potential
- The second because the derivative at the minimum is zero

This leaves us with

$$\begin{split} V(r)_{r_{eq}} &\approx \frac{1}{2!} \left(\frac{d^2 V}{dr^2} \right)_{r_{eq}} (r - r_{eq})^2 \\ &+ \frac{1}{3!} \left(\frac{d^3 V}{dr^3} \right)_{r_{eq}} (r - r_{eq})^3 \\ &+ \frac{1}{4!} \left(\frac{d^4 V}{dr^4} \right)_{r_{eq}} (r - r_{eq})^4 \end{split}$$

which should be looking vaguely familiar

(日)

This leaves us with

$$\begin{split} V(r)_{r_{eq}} &\approx \frac{1}{2!} \left(\frac{d^2 V}{dr^2} \right)_{r_{eq}} (r - r_{eq})^2 \\ &+ \frac{1}{3!} \left(\frac{d^3 V}{dr^3} \right)_{r_{eq}} (r - r_{eq})^3 \\ &+ \frac{1}{4!} \left(\frac{d^4 V}{dr^4} \right)_{r_{eq}} (r - r_{eq})^4 \end{split}$$

which should be looking vaguely familiar

$$V = \frac{1}{2} \sum_{ij} F_{ij} \Delta_i \Delta_j + \frac{1}{6} \sum_{ijk} F_{ijk} \Delta_i \Delta_j \Delta_k + \frac{1}{24} \sum_{ijkl} F_{ijkl} \Delta_i \Delta_j \Delta_k \Delta_l$$

(日)

Let's zoom in on the first term. Looking familiar?

Comparison

$$V(r)_{r_{eq}} pprox rac{1}{2!} \left(rac{d^2 V}{dr^2}
ight)_{r_{eq}} (r - r_{eq})^2$$
 $V = rac{1}{2} \sum_{ij} F_{ij} \Delta_i \Delta_j$

< □ > < □ > < □ > < □ >

Let's zoom in on the first term. Looking familiar?

Comparison

$$V(r)_{r_{eq}} pprox rac{1}{2!} igg(rac{d^2 V}{dr^2} igg)_{r_{eq}} (r - r_{eq})^2$$
 $V = rac{1}{2} \sum_{ij} F_{ij} \Delta_i \Delta_j$
 $V = rac{1}{2} kx^2$

The first term is just the harmonic oscillator potential energy, accounting for the fact a second derivative can be two steps in one direction (like x^2), or one step in different directions (like $\Delta_i \Delta_j$)

What is a quartic force field?

Quartic just refers to the fourth-degree part of the Taylor series

The quadratic or harmonic terms give us the red curve, while the third- and fourth-order terms treat the anharmonicity, giving something like the blue curve.

Quartic Force Field Training

Let's go back to our full quartic equation

$$V = \frac{1}{2} \sum_{ij} F_{ij} \Delta_i \Delta_j + \frac{1}{6} \sum_{ijk} F_{ijk} \Delta_i \Delta_j \Delta_k + \frac{1}{24} \sum_{ijkl} F_{ijkl} \Delta_i \Delta_j \Delta_k \Delta_l$$

Of the terms here, we can "easily" get:

- \blacktriangleright V \rightarrow comes out of Molpro
- $\blacktriangleright~\Delta \rightarrow$ can be anything we want, typically 0.005 Å or radians

By the way, why the summations?

If we were to plot a 1-D case of taking steps (Δ) and computing the energy with Molpro, we would get something like this

But probably not this smooth

To go from the scatterplot to a potential function, we have to

Fit a function to our points, linear regression

★ Ξ →

To go from the scatterplot to a potential function, we have to

- Fit a function to our points, linear regression
- Use that function to calculate the force constants $(F_{i,j,k,l})$

Recall $F = -\nabla V$

To go from the scatterplot to a potential function, we have to

- Fit a function to our points, linear regression
- Use that function to calculate the force constants $(F_{i,j,k,l})$

Recall

$$F = -\nabla V$$

Convert the force constants into frequencies

Harmonic oscillator again

$$\omega = \sqrt{\frac{k}{m}}$$

Fortenberry Patch

"Fortunately" we have ancient programs that handle these steps for us

- Anpass fits the function to our points and generates the force constants
- Spectro determines the frequencies from the force constants
- Intder the glue that holds all of the steps together

Getting started

Geometry optimization

Looking back at these, we see we need to start off at a good minimum

$$V(r)_{r_{eq}} \approx \frac{1}{Q!} V(r_{eq}) + \frac{1}{1!} \left(\frac{dV}{dr} \right)_{r_{eq}} (r - r_{eq}) + \frac{1}{2!} \left(\frac{d^2V}{dr^2} \right)_{r_{eq}} (r - r_{eq})^2 + \frac{1}{3!} \left(\frac{d^3V}{dr^3} \right)_{r_{eq}} (r - r_{eq})^3 + \frac{1}{4!} \left(\frac{d^4V}{dr^4} \right)_{r_{eq}} (r - r_{eq})^4$$

Cancelling the second term, in particular, requires that we are at the minimum energy structure

Geometry optimization

Assuming Molpro

 $\label{eq:ccsd} CCSD(T)\mbox{-}F12/cc\mbox{-}pVTZ\mbox{-}F12 \mbox{ example, also shortened to }F12\mbox{-}TZ \mbox{ (with my syntax highlighting "plugin")}$

	m; y=1.d-12,zero=1.d-22,oneint=1.d-22,twoint=1.d-22; ad=1.d-8,optstep=1.d-8;	
0		
H 1 oh		
C 1 oc 2 hoc		
N 3 cn 1 ocn	2 180.0	
}		
OH=	0.96399073 ANG	
OC=	1.30253236 ANG	
H0C=	109.54391210 DEG	
CN=	1.16094343 ANG	
OCN=	176.78899457 DEG	
	;wf, charge=0, spin=0; accu, 20; }	
	maxit=250;wf,c <mark>harge=0,spin=</mark> 0;orbital,IGNORE_ERROR;} d-8, <mark>srms=1</mark> .d-8}	ץ≣ ∢

Project management (optimizing you) What I do

Once that's running, you have a little while to plan your attack

Molecule	Opt	Freq	Pts	Freqs	Int	Notes
H ₂ O	х	R	R		x	Warning in opt.out
H ₂ S	R				x	
S ₂ O	R				x	

- Opt Molpro geometry optimization
- Freq Molpro harmonic frequencies
- Pts QFF single-point energies
- Freqs QFF anharmonic frequencies
- Int intensities, usually done in Gaussian

Project management Dependencies/ordering

1 can be done with a script called freqgen.sh, and we'll cover the others now

intder.in - anatomy

# INTD	ER ##	######	#####	****	#####	###						
4												Θ
STRE												
STRE												
STRE												
BEND												
LINX												
LINY												
1		1.000										
2		1.000										
3		1.000										
4		1.000										
5		1.000										
6		1.000	00000									
Θ												
		000000			01052			46241				
		000000			01438			27362				
		000000			11827			17942				
		000000			55961	6832		88448	8088			
DISP 7	43											
1		0.00	00000	900								
0												
1		-0.02	000000	900								
0												
1		-0.01										
2		-0.00	500000	900								
0												ĩ

<ロ> (日) (日) (日) (日) (日)

intder.in - anatomy

# INTD	ER ##	######	#####	#####	#####	###								
4														Θ
STRE										1	4	<u>ما: ام</u>	+:.	
STRE										որ	υu	aire	ectiv	/es
STRE														
BEND														
LINX														
LINY														
1			00000											
2			00000											
3			00000											
4			00000											
5			00000											
6		1.000	00000											
Θ	~ ~~~													
		000000			01052			462419						
		000000			01438 11827			273628 179427						
		000000			55961			884488						
DISP 7		000000			22901	0032		004400	000					
1	75	0.00	00000	000										
0		0.00	00000	000										
1		-0.02	00000	000										
0				000										
1		-0.01	50000	000										
2			50000											
ō		0.00												ĩ

・ロト ・四ト ・ヨト ・ヨト

intder.in - anatomy

# INTD	ER ##	#######	****	######	****	###			-	-	-			
4 STRE														Θ
STRE														
STRE														
BEND														
LINX							C:	mn	I. i	nta	rna	ard	ina	toc
LINY							J	шþ	ie i	me	rna	oru	IIId	les
1		1.000	00000											
2		1.000												
3		1.000												
4		1.000												
5		1.000												
6		1.000	00000											
Θ	0 000	000000			010527	7465		2 4	62419					
		000000			014386				73628					
		000000			118270				7942					
		000000			559616				84488					
DISP 7														
1		0.00	00000	000										
Θ														
1		-0.02	00000	000										
Θ														
1		-0.01												
2		-0.00	50000	000										
0														ĩ

・ロト ・四ト ・ヨト ・ヨト

intder.in - anatomy

# TNTD	FR ##					###									
4															Θ
STRE															-
STRE															
STRE															
BEND															
LINX						S	/mr	net	rv	inte	rna	$\int c d$	ord	dina	ates
LINY							,							anne	
1			000000												
2			000000												
3 4			000000												
5			000000												
6			000000												
0		1.000	000000												
	0.000	000000		-0.	01052	7465			46241	9282					
	0.000	000000			01438	6927			27362	8863					
	0.000	000000			11827	0473			17942	7573					
		000000			55961	6832		-2.8	38448	8088					
DISP 7	43														
1		0.00	000000	900											
0															
1		-0.02	000000	900											
0 1		-0 01	500000	200											
2			500000												
0		0.00	300000												ñ

intder.in - anatomy

# INTC)ER ##	######	#####	****	#####	###									
4															Θ
STRE															
STRE															
STRE															
BEND															
LINX															
LINY		3 1.000	2												
1		1.000													
3		1.000													
4		1.000													
5		1.000													
6		1.000					C	ort/		in c	oor	dina	<u>+</u>	~	
Ō							C	arte	2510		001	uma	ates	5	
	0.000	000000			01052	7465			46241						
		000000			01438				27362						
		000000			11827				17942						
		000000			55961	6832		-2.	88448	8088					
DISP 7	/43														
1		0.00	00000	000											
1		_0_02	00000	000											
0		-0.02	00000	000											
1		-0.01	50000	000											
2			50000												
0															า

・ロト ・四ト ・ヨト ・ヨト

intder.in - anatomy

# INTD	ER ##:	*****	######	#####	####	###							
4													
STRE													
STRE													
STRE													
BEND													
LINX													
LINY													
1			000000										
2			000000										
3			000000										
4			000000										
5			000000										
6		1.000	000000)									
Θ						-							
		900000			1052				46241				
		900000			1438				27362				
		900000			1827				17942				
DISP 7		900000		-1.5	5961	6832			88448	8088			
1 10150	45	0 00	000000	00									
0		0.00	000000	00									
1		- 0 02	000000	00	Г)icn	lace	m	onte				
0		-0.02	000000	100		ηen	race	ліс	JITLS	,			
1		-0 01	500000	000									
2			500000										
0			500000	,00									ร

intder.in - general tips

- Spacing matters! Everywhere
- Don't use tabs
- Don't have trailing whitespace
- Copy a similar line from a known file to compare
- Spacing matters

Generating points intder.in - general tips

That looks confusing. What do I actually change?

- Only the Cartesians for now (I think)
- Directives are in the manual if you really need them
- Internal coordinates are our next topic

Internal coordinates

Definition

Coordinates with an internal reference, in contrast to Cartesian coordinates, for example, which reference an external set of axes

Figure: Z-matrix: (hopefully) familiar internal coordinates

3			
wate			
0	0.000000	0.00000	0.00000
н	0.000000	0.00000	1.000000
н	0.968148	0.00000	-0.250380
			ព

Figure: Cartesian coordinates

Definition

Definition

Definition

Definition

Definition

Linear combinations of simple internal coordinates

Definition

Linear combinations of simple internal coordinates

Definition

Linear combinations of simple internal coordinates

Definition

Linear combinations of simple internal coordinates

Quartic Force Field Training

We can characterize a molecule, and its vibrational modes, based on symmetry. Water has $C_{2\nu}$ symmetry, which is a pretty common one in our research.

с _{2v}	E	C ₂ (z)	$\sigma_V(xz)$	σ _v (yz)	linear functions, rotations	quadratic functions	cubic functions
A ₁	+1	+1	+1	+1	Z	x ² , y ² , z ²	z ³ , x ² z, y ² z
A ₂	+1	+1	-1	-1	R _z	ху	xyz
Β1	+1	-1	+1	-1	x, R _y	xz	xz ² , x ³ , xy ²
B ₂	+1	-1	-1	+1	y, R _x	yz	yz ² , y ³ , x ² y

Figure: Symmetry or character information is found in character tables

A B M A B M

Symmetry operations

- Identity E
- Rotation C_n, at left
- Reflection σ , at right
- Inversion i, not shown
- lmproper rotation S_n , not shown

$$\blacktriangleright S_1 = \sigma$$

$$\blacktriangleright$$
 $S_2 = i$

- Usually rotations and reflections are enough to assign a symmetry, or when the symmetry is C_{2v}, that's all there is anyway.
- How do we do it?

Э

(日)

- Usually rotations and reflections are enough to assign a symmetry, or when the symmetry is C_{2v}, that's all there is anyway.
- How do we do it? Back to the character table

с _{2v}	E	C ₂ (z)	$\sigma_{V}(xz)$	σ _v (yz)	linear functions, rotations	quadratic functions	cubic functions
Α ₁	+1	+1	+1	+1	z	x ² , y ² , z ²	z ³ , x ² z, y ² z
A ₂	+1	+1	-1	-1	Rz	ху	xyz
B ₁	+1	-1	+1	-1	x, R _y	xz	xz ² , x ³ , xy ²
B ₂	+1	-1	-1	+1	y, R _x	yz	yz ² , y ³ , x ² y

Determining symmetry

Perform a symmetry operation

- If the molecule looks the same, assign a 1
- If the molecule looks the "opposite", assign a -1

• Match your ± 1 values to rows of the character table

c _{2v}	E	C ₂ (z)	$\sigma_{V}(xz)$	$\sigma_{\rm V}({\rm yz})$	linear functions, rotations	quadratic functions	cubic functions
Α ₁	+1	+1	+1	+1	Z	x ² , y ² , z ²	z ³ , x ² z, y ² z
A ₂	+1	+1	-1	-1	R _z	ху	xyz
B ₁	+1	-1	+1	-1	x, R _y	xz	xz ² , x ³ , xy ²
B ₂	+1	-1	-1	+1	y, R _x	yz	yz ² , y ³ , x ² y

Determining symmetry

What is the symmetry of the anti-symmetric stretch in water? Let the main axis of rotation be the z-axis

c _{2v}	E	C ₂ (z)	$\sigma_V(xz)$	σ _v (yz)	linear functions, rotations	quadratic functions	cubic functions
A_1	+1	+1	+1	+1	Z	x ² , y ² , z ²	z ³ , x ² z, y ² z
A ₂	+1	+1	-1	-1	Rz	ху	xyz
B ₁	+1	-1	+1	-1	x, R _y	xz	xz ² , x ³ , xy ²
B ₂	+1	-1	-1	+1	y, R _x	yz	yz ² , y ³ , x ² y

Quartic Force Field Training

Symmetry Why do we need it?

- Limits the number of displacements we have to calculate
- Part of what determines the IR activity of a mode
- It goes in your computational details

< □ > < 同 > < 回 > <</p>

Generating points

intder.in - water

# INTE)ER ##	######	#####	****	#####	###						
4												Θ
STRE												
STRE												
STRE												
BEND												
LINX												
LINY												
1			000000									
2			000000									
3			000000									
4			000000									
5			000000									
6		1.000	000000	9								
Θ												
		000000			01052			16241				
		000000			01438			27362				
		000000			11827			17942				
		000000			55961	5832	-2.8	38448	8088			
DISP 7	43											
1		0.00	000000	000								
0												
1		-0.02	000000	000								
0				200								
1			500000									
2		-0.00	500000	000								
0												ĩ

Figure: Not water

Generating points

intder.in - water

#														
5	TRE													
5	TRE													
E	END													
			1.000	000000			00000	0000						
			1.000	000000			00000	0000						
			1.000	000000										
			000000				0000			00000				
			000000				0000			00000				
		0.968	148000	1	0.0	90006	0000		-0.2	25038	0000			

Figure: Water

Quartic Force Field Training

불▶ 클 ∽९९ Fortenberry Patch

< ロ > < 回 > < 回 > < 回 > < 回 >

Generating points

- Copy (yank) optimized geometry (in Bohr) from the Molpro log file
- Paste it into the intder.in file and make sure alignment is perfect
- Run \$ intder < intder.in > intder.out or something similar
- Use pts-gen.py to generate the single-point energy calculations from intder output
 - \$ pts-gen.py h2o O H H in our water example
- \$ cd inp && sh submit to submit the calculations

Gathering output

- Grab all the energies from output files
 - \$ grep "CCSD(T)-F12b" *.out > energy.dat or use check.sh
- Check that the number of energies is the same as the number of displacements
 - handy command for this is \$ wc -l filename "word count -lines"
 - \$ comp.py h2o
 - to print missing ones to terminal
 - \$ comp.py h2o | sh to submit them right away
- Remember to rerun grep or check.sh after these run!

Preparing output

To minimize numerical noise, we want to work with relative energies. That is, we need to subtract the minimum energy from all of the other energies.

halsio3.0004.out:			-757.368358155773
halsio3.0005.out:	!CCSD(T)-F12b	total energy	-757.368299271901
halsio3.0006.out:		total energy	-757.368349137881
halsio3.0007.out:		total energy	-757.368339420197
halsio3.0008.out:		total energy	-757.368365731733
halsio3.0009.out:		total energy	-757.368338574281
halsio3.0010.out:			-757.368241908086
halsio3.0011.out:			-757.368363416914
halsio3.0012.out:		total energy	-757.368280273263
halsio3.0013.out:		total energy	-757.368293617617
halsio3.0014.out:		total energy	-757.368370633874
halsio3.0015.out:			-757.368372577147
halsio3.0016.out:		total energy	-757.368368811868

Figure: Want to go from this...

0.000058595643
0.000117479515
0.000067613535
0.000077331219
0.000051019683
0.000078177135
0.000174843330
0.000053334502
0.000136478153
0.000123133799
0.000046117542
0.000044174269
0.000047939548
0.000044314622
0.000041851643

Figure: to this.

Use awk to do this, see relmaker.sh

With the relative energies in hand, we are ready to fit them to a function $% \left({{{\rm{T}}_{{\rm{T}}}}_{{\rm{T}}}} \right)$

! INPUT					
TITLE					
al2o2					
INDEPENDENT VARIABLES					
6					
DATA POINTS					
233 -2					
(6F12.8,f20.12)					
0.0000000 0.00000					
-0.02000000 0.00000			0.0000000		0.000175586858
-0.01500000 -0.00500			0.0000000		
-0.01500000 0.00000					
-0.01500000 0.00500					
-0.01000000 -0.01000			0.0000000		
-0.01000000 -0.00500					0.000046525039
-0.01000000 0.00000					
-0.01000000 0.00000		-0.01000000	0.0000000	0.00000000	0.000048164206
-0.01000000 0.00000					
-0.01000000 0.00000					
-0.01000000 0.00000		0.00000000	0.0000000	0.00000000	0.000043367402
-0.01000000 0.00000					
-0.01000000 0.00000					
-0.01000000 0.00000			0.00000000	0.00000000	0.000048164204
-0.01000000 0.00000		0.00000000	0.0000000	0.00000000	
-0.01000000 0.00500					0.000050488282
-0.01000000 0.01000			0.00000000	0.00000000	0.000067912224
-0.00500000 -0.01500					
-0.00500000 -0.01000					0.000029200483
-0.00500000 -0.00500					0.000044259147
-0.00500000 -0.00500			0.0000000	0.00000000	0.000019722496
-0.00500000 -0.00500					
-0.00500000 -0.00500					
-0.00500000 -0.00500				0.00000000	0.000014855027
-0.00500000 -0.00500					
-0.00500000 -0.00500					
-0.00500000 -0.00500		0.01000000	0.0000000	0.00000000	0.000019722511
-0.00500000 -0.00500	360 0.01000000	0.00000000	0.0000000	0.00000000	0.000044259223

Figure: Example anpass input file

Formatting is again very important!

! INPUT					
TITLE					
al2o2					
INDEPENDENT VARIABLES					
6					
DATA POINTS					
233 -2					
(6F12.8, f20, 12)					
0.0000000 0.0000000					
-0.02000000 0.00000000					
-0.01500000 -0.00500000	0.00000000	0.00000000	0.0000000	0.00000000	0.000100399569
-0.01500000 0.00000000	0.00000000	0.00000000	0.0000000	0.00000000	0.000098228397
-0.01500000 0.00500000					
-0.01000000 -0.01000000					
-0.01000000 -0.00500000					0.000046525039
-0.01000000 0.00000000	-0.01000000	0.00000000	0.0000000	0.00000000	0.000073355273
-0.01000000 0.00000000					0.000048164206
-0.01000000 0.00000000					
-0.01000000 0.00000000					
-0.01000000 0.00000000	0.00000000	0.00000000	0.0000000	0.00000000	0.000043367402
-0.01000000 0.0000000					
-0.01000000 0.00000000					
-0.01000000 0.00000000	0.00000000	0.01000000	0.0000000	0.00000000	0.000048164204
-0.01000000 0.00000000			0.0000000		
-0.01000000 0.00500000					0.000050488282
-0.01000000 0.01000000	0.00000000		0.0000000	0.00000000	0.000067912224
-0.00500000 -0.01500000	0.00000000	0.00000000	0.0000000	0.00000000	0.000053731551
-0.00500000 -0.01000000					0.000029200483
-0.00500000 -0.00500000					0.000044259147
-0.00500000 -0.00500000	0.00000000	-0.01000000	0.0000000	0.00000000	0.000019722496
-0.00500000 -0.00500000					
-0.00500000 -0.00500000					
-0.00500000 -0.00500000			0.00000000	0.00000000	
-0.00500000 -0.00500000					
-0.00500000 -0.00500000					
-0.00500000 -0.00500000			0.0000000	0.00000000	0.000019722511
-0,00500000 -0,00500000	0.01000000		0.0000000	0.00000000	0.000044259223

Figure: Example anpass input file

(日)

The first six columns in this case are the displacements. The final column is the relative energies, which you need to replace with your data

!INPUT					
TITLE					
al2o2					
INDEPENDENT VARIABLES					
6					
DATA POINTS					
233 -2					
(6F12.8,f20.12)					
0.00000000 0.0000000					
-0.02000000 0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.000175586858
-0.01500000 -0.00500000					
-0.01500000 0.00000000					
-0.01500000 0.00500000	0.00000000	0.00000000	0.00000000	0.00000000	0.000106381061
-0.01000000 -0.01000000					
-0.01000000 -0.00500000					
-0.01000000 0.00000000	-0.01000000	0.00000000	0.00000000	0.00000000	0.000073355273
-0.01000000 0.00000000					
-0.01000000 0.00000000	0.00000000				
-0.01000000 0.0000000	0.00000000	0.00000000	0.00000000	-0.01000000	0.000077338116
-0.01000000 0.00000000					
-0.01000000 0.00000000	0.00000000				0.000077338121
-0.01000000 0.00000000					
-0.01000000 0.00000000					0.000048164204
-0.01000000 0.00000000		0.00000000			0.000073355222
-0.01000000 0.00500000					0.000050488282
-0.01000000 0.01000000					
-0.00500000 -0.01500000	0.00000000	0.00000000			0.000053731551
-0.00500000 -0.01000000	0.00000000			0.00000000	0.000029200483
-0.00500000 -0.00500000					
-0.00500000 -0.00500000	0.00000000			0.00000000	0.000019722496
-0.00500000 -0.00500000					
-0.00500000 -0.00500000					0.000048330219
-0.00500000 -0.00500000					
-0.00500000 -0.00500000					0.000048330227
-0.00500000 -0.00500000					
-0.00500000 -0.00500000					
-0.00500000 -0.00500000	0.01000000	0.00000000		0.00000000	0.000044259223

Once the input file is set up:

- Run anpass with \$ anpass < anpass1.in > anpass1.out
 - Notice the 1 here, this is the first of two Anpass runs
- Go to the bottom of the first output file and make sure the sum of squared residuals is less than about 10^{-16}

			0.000104625125	-1.22645445E-10	
	0.000366		0.000896649207		
	0.0003987		0.000898727289	-1.00916864E-10	
233	0.0001700		0.000170890946		
MIEIGHTED SI	IN OF SQUARED		1.24038840E-18		
WHERE ENERS	3Y IS -0.				
			0.00000000		
		I, STARTING WITH			
		99123759E-01			
				1.00000000	
		0.8003000 57672832E+00			
	3 U. 0.00000000	57672832E+00 0.80088008	1.00000000	0.00000000	
	0.00000000	0.8008009			
		66849638E+80			
	0.00000000	0.8008008			
	0.00000000	1.80088008			
		77581686E+00			
	0.0000000	0.80088008	0.00000000	0.0000000	
	1.66098609	0.86088608			
		86950155E+00			
ACTOCH VALUE	U U.	00000100E+00			

After this:

- Copy anpass1.in to anpass2.in
- Copy the "long line" from anpass1.out to the bottom of anpass1.in, above END OF DATA
- Cut the !STATIONARY POINT line and paste it above the "long line"

230 6. #001445/3502 6. 000146451135 -1.22045451-13 213 0. 0000149118 0. 00009049129 -3.82123171-11 213 0. 000114918990 0. 00009049129 -3.82123171-11 213 0. 000114918990 0. 00011499948 -3.23111278-11 213 0. 00011499990 0. 00011499948 -3.23311278-11 214 0. 00011499940 0.00011499948 -3.23311278-11 215 0. 00001000547 -3.23311278-11 216 0.00001000547 -0.00001000547 47 -0.000010000 0.0000000000 -0.000000000 0.000000000 0.000000000 -0.000000000 0.000000000 0.000000000 -0.000000000 0.000000000 0.000000000 -0.000000000 0.000000000 0.000000000 -0.000000000 0.000000000 0.000000000 -0.000000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000 0.00000000 -0.00000000 0.00000000						
212 0.0000000000000000000000000000000000						
2.33 0.60017059990 0.00017089940 3.7.733311275-11 WITHE SUM 05000000000 FSTUDIESCO 1.744.0000406-18 WITHE PLANE OF 15 0.6000000000077 AT 0.0000000000 0.00000000000000 0.600000000						
METGHTTD SIM GF SQUARD MESTICULS 15 1.24880486-18 METGHTD SIM GF SQUARD MESTICULS 15 1.24880486-18 METGHTUS SIM GF SQUARD MESTICULS 15 1.248804 METGHTUS SIM GF SQUARD MESTICULS 15 1.24880 METGHTUS SIM GF SQUARD MESTICULS 15 1.248804 METGHTUS SIM GF SQUARD MESTICULS 15 1.248804 METGHTUS SIM GF SQUARD MESTICULS 15 1.248804 METGHTUS SIM GF SQUARD MESTICULS 15 1.24880 METGHTUS S						
N Н Н Н И И N В В В В В В В В В В В В В В В В В В В						
WHERE PERFEY 15 0.000000000547 0.000000000517 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0	ONEIGHTED 3					
WHERE PERFEY 15 0.000000000547 0.000000000517 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0						
AT -0.000031179 AT -0.000031179 B 0.000001179 B 0.00000000 B 0.000000000000000 B 0.00000000000000 B 0.000000000000000 B 0.000000000000000000 B 0.00000000000000000000000000000000000	Ð					
AT -0.000031179 AT -0.000031179 B 0.000001179 B 0.00000000 B 0.000000000000000 B 0.00000000000000 B 0.000000000000000 B 0.000000000000000000 B 0.00000000000000000000000000000000000	WHERE ENER	GV TS IN ARRANGE				
E 0.00000000 E 0.00000000 E 0.00000000 E 0.0000000 E 0.000000 E 0.00000						
Continue						
-0.0003111026. 0.000000000 0.00000000000000000000000000000000000						
00000 6.0000000037 ELEMANLES OF PRESSIN, STATTING HETH LOBEST ELEMANLE 2 0.000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000						
ExtraConstruction ExtraConstruction ExtraConstruction ExtraConstruction 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000			L47646 0.00000000	0.0000000000000000000000000000000000000	0.800860086008	0.0000000
VELCENAUE 1 0.9327392-01 0.800000 0.8000000 0.6000000 0.800000 0.8000000 0.6000000 0.800000 0.8000000 0.6000000 0.800000 0.8000000 0.6000000 0.800000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000 0.8000000 0.6000000 0.6000000						
0.4000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000 0.6000000						
0.40000000 0.400000000 0.400000000 0.400000000 0.400000000 0.400000000 0.400000000 0.400000000 0.400000000 0.400000000 0.400000000000000000000000000000000000	DEIGENVALUE					
ExtERNALL 2 0.4513727-00 0.0000000 0.82377 0.9352.000 0.0000000 0.80000 0.7072025-00 0.0000000 0.800000 0.0000000 1.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000 0.8000000 0.0000000 0.0000000						
0.8233973 0.9243324 0.8008008 0.800808 0.80088 0.8008 0.80088 0.80088	DETGERMALLIE					
0_0000000 0_00000000 0_0000000 <				8 88888888		
EECEMALUE 3 0.0773322:00 0.000000 0.0000000 1.0000000 0.000000 EECEMALUE 0.00000 0.00000000 0.0000000 EECEMALUE 0.000000 0.0000000 0.0000000 EECEMALUE 0.0000000 0.0000000 0.0000000 EECEMALUE 0.0000000 0.0000000 0.0000000 0.0000000						
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	DETGENVALUE					
ETECHAULE 4 0,60003355-00 0,0000000 0,8000000 0,0000000 0,00080000 ETECHAULE 0,000000 0,0000000 ETECHAULE 0,000000 0,0008000 0,00080000 ETECHAULE 0,000000 0,0008000 0,00080000 0,000800000 0,0008000 0,00080000 0,00080000		0.00000000 0.0000				
0,00000000 0,00000000 0,0000000 0,000000						
0,08008000 1.08008000 BETGENVALUE 5 0.77531865E-00 0.80008000 0.09008000 0.00080000 0.000800000	DEIGENVALUE					
DETGENVALUE 5 0.77581686E+00 0.80008000 0.80088000 0.90088008 0.00880080						
0.80008000 0.80088008 0.8008008 0.00860080						
	DEIGENVALUE					
1.0000000 0.0000000				6.0000000		
		1.0000000 0.0000	1000			

_				_									 	
		500000				0.000		0000000	0.0000			00000	0.0001046251	
				90000		0.000		0000000	0.0000			00000		
		500000		90500		0.000		0000000	0.0000			00000	0.0000987272	
		000000	0.0	90000	9000	0.000	00000	0000000	0.0000	00000	0.00	00000		
U	NKNOW	NS												
FI														
			POIN											
11	END													

Figure: anpass1.in bottom

0.0150000 0.0150000 0.0150000 0.02000000 UNKNOWNS 53 FUNCTION	10 0. 10 0.	005000 000000 005000 000000	300 300	0.000 0.000 0.000 0.000	66666 66666	0.0 0.0	000000 000000 000000 000000	90 90	0.0000 0.0000 0.0000 0.0000	0000 0000	0.0 0.0	000000 000000 000000 000000	10 10	0.00 0.00	00104625125 00096649207 00098727289 00170890946	
0 0																
0 0																
1 1																
0 0																
Θ 1																
0 0																
1 2																
0 0																
4 0																
0 0																
0 0																
0 0																
0 0																
0 2																
0 0																
0 0																
0 0																
2 0																
0 0																
0 2																
0 0																
0 0																
0 0																
STATIONARY																
-0.000 00000 END OF DATA !FIT		2685 000000		0.000				9.00								0.0000000
IEND																
ELVD.																 Rot

Figure: anpass2.in bottom

What is the long line?

- In fitting our function, anpass can find a new minimum that is slightly different from the one from Molpro
- The long line is the series of displacements that correspond to this minimum, along with its energy
- The "!" is a comment, so we are telling anpass that the long line is a stationary point and to run a slightly different calculation

The other important thing anpass gives us are the force constants in fort.9903

	53		
			0.00000000288
			2.879641150306
			3.268664626615
			3.382416943673
			16.919503402043
			7.720549618100
			0.432161118353
			-3.489227624058
			-4.247795562121
			2.317438189761
			-9.100591142294
			-0.014823366425
			2.514428022426
			22.039113667990
			21.784976166893

Figure: fort.9903

This takes us back into intder

Intder

intder_geom.in

Anpass gave us a new equilibrium geometry in terms of symmetry internal coordinate displacements. We need to use Intder to turn that into a Cartesian geometry. Intder's main purpose is undertaking these transformations for us, hence calling it the glue

- ► Copy your intder.in file from pts and call it intder_geom.in
- Change the number of displacements to 1 and delete all of the displacements
 - You may want to keep at least one or two for alignment reference
- Take the nonzero lines from under WHERE ENERGY IS AT in anpass1.out to be the new displacements

★ ∃ → ★ ∃

Intder

intder_geom.in

I'm mixing my examples here unfortunately, so pay attention to the displacements section only

# INT	DER ##				1888					
4										
STRE										
STRE										
STRE										
BEND										
LINX										
LINY										
1										
2										
3										
4										
5										
6		1.000								
Θ										
		666666								
							8688			
DISP										
1		0.06								
0 1										
G I										
			50000							
1										
2		-0.06								
U										

# IN	IDER	224	002200	*****	****	60.86	688							
4														
STRE														
STRE														
STRE														
STRE														
STRE														
STRE														
TORS														
3				9999996			0000			986991		1.0000		
-			1.0000											
			1.0000					00000	-1.60			1.0000		
				1005880			08860		1.00			1.0000	00000	
			66666						300860					
			63181			99996E 29101			300860					
			63181			90000			300800					
			000000			39167			300860					
DISP														
DISF			-0.000											
				300514										

Figure: intder.in from pts

Figure: intder_geom.in

These are the same numbers from the long line, but formatted more easily for our use (a + b) + (a + b) +

Quartic Force Field Training

Fortenberry Patch

Intder

intder_geom will produce a new equilibrium geometry in Cartesian coordinates that we can stick back in to a slightly different type of intder file

- Copy any intder.in to the freqs directory
- Take the new geometry from the very bottom of intder_geom.out and replace the one in intder.in
- Delete everything below the Cartesian coordinates
- The next line needs to be the atoms, with their masses
 - You almost definitely want to copy one of these lines from another file to get the alignment right

Intder intder.in

# 1	INTDE	R ##	#######	######	****	"### #	###								
STE	٩E														
STE	٩E														
STE	٩E														
ST	٩E														
ST	٩E														
STE	٩E														
TOF	٩S														
			1.000	000000			000000	9000							
			1.000	000000			000000	9000							
			1.000	000000			000000	9000		-1.00	00000	00	1.00000	00000	
			1.000	000000											
			1.000	000000			000000	9000		-1.00	00000	00	1.00000	00000	
			1.000	000000			000000	9000		1.00	00000	00	1.00000	00000	
Γ		0.000	000000			39167	8166		0.0	00000	000				
Γ			263181		0.0	90000	0000		0.0	900000	000				
			263181		0.0	90000	0000		0.0	00000	000				
		0.000	000000			39167	8166		0.0	00000	000				
				AL2			AL27			16					

Figure: Our intder.in file so far

Intder.in

Now we need to read in the force constants from fort.9903

- You can read fort.9903 in directly with :r fort.9903, but there is a lot of processing to do
- Instead, use format.sh; there are two ways to use it:
 - My preferred way is to run it from inside vim with :r !format.sh
 - But you can also run it at the command line \$ format.sh > intder.bot and save the output into a file that you then read in to intder in

< ∃ >

Intder intder.in

# INTD	ER ##	#######	*****	#####		####							
4													
STRE													
STRE													
STRE													
STRE													
STRE													
STRE													
TORS													
1			900066										
2			900000										
3							0000		00000			00000	
4			900000										
5			900008									000006	
6		1.000	900008				0000	1.00	00000		-1.00	000006	
Θ													
								000000					
						90000		000000					
						80000		000000					
1		000000						000000	000				
6						641150							
5													
4						161118							
3						428022							
2													
2						632546							
1													
0													
6						910045							
5						237143							
4						503785							
6	5	3	Θ	-9.	166	591142	294						

Figure: Part of the final intder.in file

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction 000000000000000	Optimization 0000	Points 000000000000000000000000000000000000	Frequencies 000000000000000000000000000000000000
Intdor			

Intder

intder.out

- Run intder: \$ intder < intder.in > intder.out
- Verify that the harmonic frequencies at the very bottom correspond to those from Molpro (if those have finished)
- Run \$ tennis.sh to move the intder output files to the filenames expected by spectro

-0.000000				-8.896868		
-0.000000				-0.033048		
0.010000						
0.003940				8,000000		
					-0.000024	
0.053040	0.000000	0.000000	0.0000000	0.000000		

spectro.in

You should be given a spectro.in file looking something like this

4 8.00	0.000	00000						
13.00	2.274			0.0000		. 00000		
3.00	0.000	00000						
	81539							
	81539							

spectro.in

Don't worry about these, probably

	# SPECT	FRO ##	****	<i></i>	*#####	****	# <i>###</i> ##	*****	****	######					
	# GEOM														
	4														
	8.00			000000											
	13.00														
	13.00														
	8.00			000000								0000			
	# WEIGH														
	4 1	15 9													
	2		81539												
	3		81539												
	4		94915												
	# CURVI														
	1														
	1														
	1														
	1														
	1														
	4														
	# FERMI														
1															
	6 5														
	# CORIC														
	3 0														
	Θ														
	3														
	Θ														
	4														
Quartic	Force	Field	l Tra	ining											

Input directives, see manual

イロト イ団ト イヨト イヨト

≣ ▶ ≣ •ી ૧. Fortenberry Patch

spectro.in

You will definitely need to change these

# GEOM 4 3.00 13.00 13.00 3.00		0.000 2.274 2.274	26318 26318	6	2.39167 0.00000 0.00000	00000		00000 00000 00000	0000		G
	15.9 26.9 26.9 15.9 15.9 2 3 4 4 4 4 3	2994915 981539 981539 994915 777777777777777777777777777777777777									

Geometry

spectro.in

 $Change \ these \ too, \ from \ nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses$

# SPEC 1 1 # GEOM 4 8.00 13.00 13.00		3 0 0.0000 2.2742 2.2742	263181 263181		/////// 0 /////// 39167 00000 00000	0000	0 0 1444	00 0 00000 00000 00000	0000 0000	0 0	0	0		
# WEIG 4 1 2 3 4	26.9 26.9	### 94915 981539 981539 994915											Masses	
# CORV 1 1 1 1 4												A		
3 0														
3													< ∂ > <≣	× ₹≣

Quartic Force Field Training

Fortenberry Patch

spectro.in

You shouldn't need to touch these, they should resemble the simple internals from intder

	# SPEC	TRO ## 1 1	3 0	2 0	θ Θ	0 1	1 0	4 9	0 0	0 0	00 0	0	0 0	0 0	0
	# GEON														Ŭ
	8.00 13.00			000000 26318:			.39167 .00000				00000				
	13.00		2.274				.00000	0000				0000			
	8.00											0000			
	4														
	1 2		94915 81539												
	3		81539												
	# CUD		04035												
	# CON														
	1														
	1														
	1 4														100
	# FER														
	1 6														
	# CORI														
	3														
	3 0 3 0														
	0 4														
	4														
	5														
Quartic F	orce F	ield 1	raini	ng											

Curvilinear coordinates

(日)

spectro.in

We'll talk more about these in a minute

13.00 -2.274263181 0.000000000 0.00000000 13.00 2.274263181 0.000000000 0.000000000	# SPE	CTR) ##1	*****	#####	*****	###J	******	*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*####	t#		
0 0000 execute 4 1 8.00 0.000000000 2.331678166 0.000000000 13.00 2.274263181 0.000000000 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.0000000000 -2.331678166 0.000000000 0.0000000000 -2.331678166 0.000000000 0.0000000000 -2.331678166 0.000000000 0.0000000000 -2.331678166 0.000000000 0.0000000000 -2.331678166 0.000000000 0.0000000000 -2.331678166 0.0000000000 0.0000000000 -2.331678166 0.000000000 0.0000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.000000000 0.000000000 -2.331678166 0.00000000 0.0000000000 0.000000000 -2.331678166 0.00000000 0.000000000 0.000000000 0.00000000														
1.00 0.000000000 2.391078166 0.000000000 13.00 2.2724253181 0.000000000 0.00000000 13.00 2.2724253181 0.00000000 0.00000000 WEIGHT essent -2.391078166 0.00000000 # 1 15.994915 2 26.981539 -2.391078166 0.00000000 3 26.981539 -2.391078166 0.00000000 1 2 2.99135 -2.391078166 0.000000000 1 2 2.99135 -2.391078166 0.000000000 1 2 2.99135 -2.391078166 0.000000000 1 2 -2.99135 -2.391078166 -2.391078166 1 4 3 - - - 1 4 3 - - - 1 4 3 - - - - 3 2 0 0 1 - - - 3 3 2 0 1 - - - - 6														
13.00 -2.27425131 0.000000000 0.000000000 13.00 -2.27425131 0.000000000 0.000000000 13.00 0.000000000 -2.391678166 0.000000000 15.994915 -2.291678166 0.000000000 2 26.98159 -2.391678166 0.000000000 3 26.98159 -2.291678166 0.000000000 1 2 -2.291678166 0.000000000 1 3 - 2 -2.291678166 0.000000000 1 4 - 2 -2.291678166 -2.291678166 1 4 - 2 -2.291678166 -2.291678166 1 4 - 2 -2.291678166 -2.291678166 1 4 - 2 -2.291678166 -2.291678166 1 4 - 2 -2.29167878888888888888888888888888888888888														
13.00 2.274253131 0.00000000 0.00000000 0.000000000 0.000000														
8.00 0.00000000 -2.39157816 0.000000000 HITCHT research 2.25581539 3.26580539 4.155994915 2.26580539 4.15594915 4.15594915 4.15594915 4.15594915 4.15594915 4.15594915 4.15594915 5.5400 5.4000 1.0000 5.4000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000000 1.00000000 1.00000000 1.000000000 1.000000000 1.000000000 1.000000000 1.0000000000														
4 1 15.994915 2 26.981539 4 15.994915 (UVII) exceeded and a second	8.00													
1 15.994915 2 26.981539 3 26.981539 4 15.994915 0 CUTUL ***********************************														
2 26.981539 3 26.981539 4 15.994915 1 2 1 3 1 4 1 4 1 4 2 1 4 3 0 FERS(1 eccess) 3 0 3 2 0 0 0 1 0 4 1 0 0 1 0 5 4 0 0 1 5 4 0 0 1			15 00											
4 15.999915 1 2 1 2 1 3 1 4 1 4 2 1 4 3 0 FERT 1 ****** 3 0 3 2 0 0 1 0 3 2 0 0 1 0 4 1 0 0 1 5 4 0 0 1														
			15.99	34915										
	# FER		###											
	3													

Quartic Force Field Training

æ Fortenberry Patch

spectro.out

Run spectro with

\$ spectro < spectro.in > spectro.out

 Open spectro.out and search for "FUND" and it should look something like below

ь	0.200	-0.739	-0.896	-2.181	0.368	0.018
			ENTER ANALYS			
MODE			DAMENTAL	DIFFERENCE		
20 20 1	805.408 774.882 679.875 647.702 524.333 301.995 HE DUNHAM COEF LEVANT IN THERMO	OYNAMICS	794.559 762.614 567.160 534.930 520.772 300.408	10.849 12.268 12.714 12.772 3.561 1.587		
KKK SU	MMED COMPONENT I MMED COMPONENT I MMED COMPONENT I MMED COMPONENT I 5.4426799464	5 -0.2867 5 1.341 5 3.228	924723174358 741453159454 137762821829 879653963718			

Quartic Force Field Training

Fortenberry Patch

spectro.out

Now, jump to the top and search for "FERMI"

- This will take you to the resonances
- We only worry about the Fermi and Coriolis ones

	 						10	
			SONANCES	*********	******** T = W1			
	CRONCER:	*********	SOMANCES	********	********			
ALPHA						-0.0003-		
						PHI IIJ	EST.PE	
		RESONANCE		TYPE 2				
	OFF	ERMI RESON						
		NTCON DECC	NANCES					
8*****			WANCED **********					

Quartic Force Field Training

What is a resonance?

Fermi resonance

If two vibrational modes have the same symmetry and similar energies, the higher energy mode will shift to higher energy and the lower to lower energy, basically to get away from each other

What is a resonance?

The definition may be slightly different for Coriolis resonances, but there wasn't a Wikipedia page

Fermi type 1

An overtone band, an integer multiple of one frequency, has a frequency similar to that of another band.

We see an example of this in our spectro.out file. $2\nu_6\approx\nu_5$

***	***	****	*****	******	******	******	********	*****
		FERMI	RESON	ANCE	TYPE 1	2W	I = WJ	

				WI	WJ	DIFF	PHI IIJ	EST.PERTURB.
Х				301.99	524.33	79.66	-11.380	0.000

80 cm⁻¹ is a pretty huge difference, so the estimated perturbation is zero, but often these frequencies line up perfectly and have a substantial effect

What is a resonance?

Fermi type 2

The combination of two lower frequency modes have a frequency similar to one higher frequency mode.

Example

Let $\nu_6 = 234.5$, $\nu_5 = 364.3$, and $\nu_2 = 600.1 \text{ cm}^{-1}$. Then $\nu_6 + \nu_5 = 598.8 \approx \nu_2$, and we could expect a larger perturbation than seen for our type 1 example.

spectro.in again

How do we account for these resonances? We already saw how to handle type I resonances in the example spectro file

This says that we have one type 1 Fermi resonance, in which $2\nu_6 = \nu_5$.

Spectro spectro.in again

To handle a type 2 Fermi resonance, such as the one in our example, we would add another block like this:

which again says that $\nu_6 + \nu_5 = \nu_2$

-∢ ≣ ▶

spectro.in again

Fermi polyad

We can also have a situation where multiple combinations come close to a single frequency. For example, both $\nu_6 + \nu_5$ and $2\nu_4$ could be close to ν_2 . This results in a Fermi polyad, which should be handled separately.

#				
#				
Γ.				

Figure: Handling a Fermi polyad for Ti₂O₂

.⊒ →

Spectro spectro.in again

Basically if you have a polyad you need to make one of those RESIN arrays. Everything on the right hand side of the equation gets a row with a one in its column, and everything on the left hand side gets a row. In the previous example, we had a row

1 0 0 0 0 0

which represents ν_1 , which appeared in two type 1 Fermi resonances, $2\nu_4 = \nu_1$ and $2\nu_5 = \nu_1$. The corresponding row for ν_5 is

A B M A B M

	Optimization 0000	Frequencies 000000000000000000000000000000000000
Spectro spectro.in again		

The combinations of modes that make ν_5 and ν_1 get their own rows. Since in this case they are type 1 Fermi resonances, there are twos in those positions. For $2\nu_4$, which equals ν_1 , we get the row

and so on. If we had a type 2 Fermi resonance, say $\nu_3 + \nu_4 = \nu_1$ too, we would add a row that looks like

0 0 1 1 0 0 The ordering of these rows does not matter, just make sure that every left and right hand side is accounted for in equations like $\nu_3 + \nu_4 = \nu_1$.

spectro.in again

Coriolis resonances

I'm not as sure about the physical meaning of these, but think of them the same way. Some combination of frequencies bumps into each other and wants to push the other away. Regardless, we need to handle them.

*****	****	****	*****	******	******	******	****
		C	ORIOLIS RE	SONANCES	W	I = WJ	
*****		*****	******	******	******	******	
	I	J	WI	CW	DIFF	ZETA	DeltaALPHA
ALPHA Alpha Alpha	3C 4C 5C	2 1 4	679.87 647.70 524.33	774.88 805.41 647.70	-95.01 -157.71 -123.37	-1.000 -0.351 -0.936	-0.00458 -0.00034 -0.00311

Figure: Coriolis resonances in spectro.out

spectro.in again

The way I read these are the first number, then the second, then the letter. So 3, 2, C in the case of the first one here.

*****							*****
		C	ORIOLIS RE	SONANCES	W	I = WJ	
*****							****
	I	J	WI	WJ	DIFF	ZETA	DeltaALPHA
ALPHA	3C	2	679.87	774.88	-95.01	-1.000	-0.00458
ALPHA	4C	1	647.70	805.41	-157.71	-0.351	-0.00034
ALPHA	5C	4	524.33	647.70	-123.37	-0.936	-0.00311

Figure: Coriolis resonances in spectro.out

spectro.in again

And that's basically the way you put them in. The weirdest thing is that the letters are given by a vector. A \to 1 0 0, B \to 0 1 0, and C \to 0 0 1

# CORIOL	#####	##		
3				
Θ				
3	2	Θ	Θ	1
Θ				
4	1	0	0	1
Θ				
5	4	Θ		1

Figure: Coriolis resonances in spectro.in

▶ ∢ ≣

▲ (日) ▶ ▲

Spectro Vibrational data

- Run spectro again to finish up
- You can check FUND again to make sure it still looks right, but to see where the resonances are taken into account, we need to search instead for ZPT
 - Here, look for the "STATE NO." corresponding to 1 plus whatever mode. State 7 for v₆, for example.
 - You can also use my script inspectro, which will print the harmonic, anharmonic, and resonance corrected frequencies, although it sometimes prints a lot more too
- You also want State 1, which is the ZPT. We report this as zero-point vibrational energy (ZPVE)

Spectro Vibrational data

STATE NO.	ENERGY (CM-1)	ABOVE ZPT	VIBRATION	ML S	TATE		
1							θ
7							1
6							θ
13							2
5							0
4							θ
3							0
2							θ
28							1,

Figure: Sample ZPT section

1860.3		
HARM	FUND	CORR
805.4	794.6	794.6
774.9	762.6	762.6
679.9	667.2	667.2
647.7	634.9	634.9
524.3	520.8	520.7
302.0	300.4	300.4
	HARM 805.4 774.9 679.9 647.7 524.3	HARM FUND 805.4 794.6 774.9 762.6 679.9 667.2 647.7 634.9 524.3 520.8

Figure: Sample inspectro output

<ロト < 部ト < 注ト < 注</p>

Spectro Rotational data

Spectro also outputs rotational constants, which can be found by searching:

▶ BZA - *A*, *B*, and *C* rotational constants for every vibrational state. BZA is usually *A*, BXA is *B*, and BYA is *C*. In this case we have *A*₀, *B*₀, and *C*₀.

VIBRATIONAL STATE NON-DEG(Vt) :	0	Θ	0	0	Θ	Θ
ROTATIONAL CONSTANTS BXA 0.2148329		-1) BYA .12958	369			3ZA 3275038

Spectro Rotational data

Spectro also outputs rotational constants, which can be found by searching:

DELTA, quartic distortion constants

	CM-1	MHz
DELTA J	0.0000000702	0.0021030914
DELTA K	0.000002739	0.0082114140
DELTA JK	-0.0000000477	-0.0014293852
delta J	0.000000271	0.0008129388
delta K	0.000000809	0.0024252037

-

Spectro Rotational data

Spectro also outputs rotational constants, which can be found by searching:

PHI, sextic distortion constants

	IN CM-1	IN Hz
PHIJ:	0.6628031116D-13	0.1987033740D-02
PHIK :	0.1468897092D-11	0.4403642696D-01
PHI JK :	-0.2289305553D-12	-0.6863165389D-02
PHI KJ :	-0.7127345498D-12	-0.2136724426D-01
phij:	0.3301218541D-13	0.9896804209D-03
phijk :	-0.3351971470D-13	-0.1004895766D-02
phik :	0.6056513421D-12	0.1815697045D-01

Reporting Units and precision

- Vibrational frequencies to 1 decimal place in cm⁻¹, ex. 627.4 cm⁻¹
 - Harmonic frequencies are denoted ω_n (omega)
 - Anharmonic frequencies are denoted ν_n (nu)
- \blacktriangleright A, B, and C, rotational constants to 1 decimal place in MHz
- Δ and Φ constants to 3 decimal place but no more than 5 sig figs. Adjust units accordingly. For example, instead of 35154.123 kHz, use 35.154 MHz
- Bond lengths to 5 decimal places
- Bond angles (I think) to 3 decimal places

| 4 同 ト 4 ヨ ト 4 ヨ ト

Reporting Mode descriptions

Given symmetry internal coordinates, S_n , like those on the left, which go in the Computational Details, we often want to describe the resulting vibrational modes as linear combinations of them, as on the right

$$S_1(a_1) = r(H_1 - C_1)$$
 (1)

$$S_2(a_1) = r(H_1 - C_2)$$
 (2)

$$S_3(a_1) = \frac{1}{\sqrt{2}} [r(C_2 - C_3) + r(C_2 - C_4)]$$
 (3)

$$S_4(a_1) = \frac{1}{\sqrt{2}} [r(C_3 - H_2) + r(C_4 - H_3)]$$
 (4)

Mode	Description	Symmetry
ω ₁	0.96 <i>S</i> ₁	a_1
ω ₂	0.9554	a1
ω	1.0058	b2
ω_4	$0.68S_2 + 0.28S_3$	<i>a</i> ₁
ω_5	$0.74S_5 + 0.24S_2$	<i>a</i> ₁
ω_6	$0.90S_{10} + 0.12S_9$	<i>b</i> ₂
ω_7	$0.58S_{11} + 0.31S_9 + 0.09S_{10}$	b_2

(日)

Reporting Mode descriptions

Fortunately, you can find this information by searching "ASSIGNMENT" in intder.out

VIBRATIONAL ASSI	GNMENTS
MODE CM-1	DOMINANT COMPONENTS OF TED
1 302.0 2 524.3 3 647.7 4 679.9 5 774.9	4 (100.0) 2 (95.2) -1 (4.8) 3 (100.0) 6 (100.0) 5 (100.0)
6 805.4	1 (95.2) 2 (4.8)

In this case, basically every frequency lines up 1:1 with a symmetry internal coordinate, but as shown on the previous slide this is not always the case