Linear and Non-Linear Optimization

Brent R. Westbrook

March 2, 2022

Linear Regression Simple Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Linear Regression Simple Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Linear Regression How does it work?

Black box

Linear Regression How does it work?

Black box

Math Solve

$$Ax = b$$

for matrix A and vectors \boldsymbol{x} and \boldsymbol{b}

Two Cases Exact solution

System of Equations

$$x + 4y = 2$$
$$2x + 5y = -2$$

Two Cases Exact solution

System of Equations

x + 4y = 22x + 5y = -2 $\begin{bmatrix} 1 & 4\\ 2 & 5 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 2\\ -2 \end{bmatrix}$

Matrix Form

Two Cases Exact solution

System of Equations

$$x + 4y = 2$$
$$2x + 5y = -2$$

Matrix Form

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Code

import numpy as np

A = np.array([1, 4, 2, 5]).reshape(2, 2)
b = np.array([2, -2])
soln = np.linalg.solve(A, b)
$$\# \implies [-6, 2]$$

Idea Instead of solving Ax = b exactly, minimize ||Ax - b||

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Two Cases No exact solution

Idea

Instead of solving Ax = b exactly, minimize ||Ax - b||

Equation of a line y = mx + b

Matrix version

$$\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = y$$

Two Cases No exact solution

Back to the trend line

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \\ 6 & 1 \\ 7 & 1 \\ 8 & 1 \\ 9 & 1 \\ 10 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 2.3 \\ 3.4 \\ 7.6 \\ 8.1 \\ 9.4 \\ 13.6 \\ 14.5 \\ 15.9 \\ 18.6 \\ 21.7 \\ 21.8 \end{bmatrix}$$

import numpy as np

Solution [2.04, 2.23], same as before

<ロ>

Generalization!

Generalization!

Already seen exact vs least-squares solution

- more rows in A
- Extends to more variables
 - more columns in A
- Extends to polynomials

Generalization!

Already seen exact vs least-squares solution

- more rows in A
- Extends to more variables
 - more columns in A
- Extends to polynomials

Polynomial regression

$$A = \begin{bmatrix} x_1^m & \dots & x_1^2 & x_1 & 1 \\ x_2^m & \dots & x_2^2 & x_2 & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ x_n^m & \dots & x_n^2 & x_n & 1 \end{bmatrix}$$

Each column has a different power of x in addition to coefficient

ANPASS is just polynomial regression

QFF Equation

$$V = \frac{1}{2} \sum_{ij} F_{ij} \Delta_i \Delta_j + \frac{1}{6} \sum_{ijk} F_{ijk} \Delta_i \Delta_j \Delta_k + \frac{1}{24} \sum_{ijkl} F_{ijkl} \Delta_i \Delta_j \Delta_k \Delta_l$$

ANPASS is just polynomial regression

QFF Equation

$$V = \frac{1}{2} \sum_{ij} F_{ij} \Delta_i \Delta_j + \frac{1}{6} \sum_{ijk} F_{ijk} \Delta_i \Delta_j \Delta_k + \frac{1}{24} \sum_{ijkl} F_{ijkl} \Delta_i \Delta_j \Delta_k \Delta_l$$

Matrix Version

$$XF = V$$

Matrix form for ANPASS problem

$$X_{ik} = \prod_j x_{ij}^{\mathbf{e}_{jk}}$$

where x_{ij} is the jth (horizontal) component of the ith (vertical) displacement

Sample displacments

-0.00500000	-0.00500000	-0.0100000	0.000128387078
-0.00500000	-0.00500000	0.00000000	0.000027809414
-0.00500000	-0.00500000	0.01000000	0.000128387078
-0.00500000	-0.0100000	0.00000000	0.000035977201

and e_{jk} is the jth (row) and kth (column) exponent found at the bottom of the ANPASS input file

Sample exponents

0	1	0	2	1	0	0	3	2	1	0	1	0
0	0	1	0	1	2	0	0	1	2	3	0	1
0	0	0	0	0	0	2	0	0	0	0	2	2

Solving the Problem

Basic version Just solve like we saw before:

XF = V

Solving the Problem

Basic version Just solve like we saw before:

$$XF = V$$

Actually solve

$$F = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}V$$

This gives a safer solution than inverting X directly, but the idea is the same

Why this is important

 Matrix formulation let me rewrite ANPASS with more than 20x speedup

Very useful piece of math

What if the relationships aren't linear? Non-Linear Least Squares

Goal

 $``[\mathsf{T}]\mathsf{o}$ fit a set of observations with a model that is non-linear in the unknown parameters''

Problem Statement

- Have some function, f(x, β), where x is some input and β is a set of parameters.
- Also have a set of "true" values y

• Minimize their difference
$$y - f(\beta)$$

Non-Linear Least Squares

Gauss-Newton Method

$$(\mathsf{J}^{\top}\mathsf{J})\delta = \mathsf{J}^{\top}[\mathsf{y} - \mathsf{f}(\beta)]$$

where

$$\mathsf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial \beta_1} & \cdots & \frac{\partial f_1}{\partial \beta_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial \beta_1} & \cdots & \frac{\partial f_m}{\partial \beta_n} \end{bmatrix}$$

and δ is the next step in the parameters β

Non-Linear Least Squares

Gauss-Newton Method

$$(\mathsf{J}^{\top}\mathsf{J})\delta = \mathsf{J}^{\top}[\mathsf{y} - \mathsf{f}(\beta)]$$

where

$$\mathsf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial \beta_1} & \cdots & \frac{\partial f_1}{\partial \beta_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial \beta_1} & \cdots & \frac{\partial f_m}{\partial \beta_n} \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

and δ is the next step in the parameters β

Works okay, but can fail to converge

Non-Linear Least Squares Gradient Methods

$$\delta = -\left(\frac{\partial \Phi}{\partial \beta_1}, \frac{\partial \Phi}{\partial \beta_2}, \dots, \frac{\partial \Phi}{\partial \beta_n},\right)^{\mathsf{T}}$$

Just step in the direction of the gradient

Non-Linear Least Squares Gradient Methods

$$\delta = -\left(\frac{\partial \Phi}{\partial \beta_1}, \frac{\partial \Phi}{\partial \beta_2}, \dots, \frac{\partial \Phi}{\partial \beta_n},\right)^{\mathsf{T}}$$

Just step in the direction of the gradient

Typically converges, but very slowly

Non-Linear Least Squares Levenberg-Marquardt

General Appearance

$$(\mathsf{J}^{\top}\mathsf{J} + \lambda\mathsf{I})\delta = \mathsf{J}^{\top}[\mathsf{y} - \mathsf{f}(\beta)]$$

Introduces the parameter λ that controls the interpolation between Gauss-Newton and gradient descent

Non-Linear Least Squares

General Appearance

$$(\mathsf{J}^{\top}\mathsf{J}+\lambda\mathsf{I})\delta=\mathsf{J}^{\top}[\mathsf{y}-\mathsf{f}(\beta)]$$

Introduces the parameter λ that controls the interpolation between Gauss-Newton and gradient descent

Basic steps

- Compute J with finite differences
- $\blacktriangleright \text{ Solve for } \delta$

Refinements

Problem: Gauss-Newton when going well, gradient otherwise

- Introduce the parameter $\nu > 1$
- Let Φ be the norm or measure to minimize and Φ^(r) be the current value

Refinements

Problem: Gauss-Newton when going well, gradient otherwise

- Introduce the parameter $\nu > 1$
- Let Φ be the norm or measure to minimize and Φ^(r) be the current value

What if λ gets unreasonably large?

Refinements

Modify case (3)

Instead of taking step δ , take step $K\delta$, where K is made smaller until $\Phi \leq \Phi^{(r)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Refinements

Modify case (3) Instead of taking step δ , take step $K\delta$, where K is made smaller until $\Phi \leq \Phi^{(r)}$

When should you do this? (part I had left out)

Refinements

Modify case (3) Instead of taking step δ , take step $K\delta$, where K is made smaller until $\Phi \leq \Phi^{(r)}$

When should you do this? (part I had left out)

Angle, $\gamma,$ between the step and gradient

$$\gamma = \operatorname{acos} \frac{\delta^{\mathsf{T}} \mathsf{g}}{(||\delta||)(||\mathsf{g}||)}$$

When $\gamma < \frac{\pi}{4}$

Refinements

Problem: Gradient methods are not scale invariant Transform $J^{T}J$ (A) into A*

$$\mathsf{A}^* = (a^*_{ij}) = \left(rac{a_{ij}}{\sqrt{a_{ii}}\sqrt{a_{jj}}}
ight)$$

and $J^{\top}[y - f(\beta)] = g$ into g^* :

$$\mathsf{g}^* = (\mathsf{g}_j^*) = \left(rac{\mathsf{g}_j}{\sqrt{\mathsf{a}_{jj}}}
ight)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Refinements

Problem: Gradient methods are not scale invariant Transform J^TJ (A) into A*

$$\mathsf{A}^* = (\mathsf{a}^*_{ij}) = \left(rac{\mathsf{a}_{ij}}{\sqrt{\mathsf{a}_{ii}}\sqrt{\mathsf{a}_{jj}}}
ight)$$

and $J^{\top}[y - f(\beta)] = g$ into g^* :

$$g^* = (g_j^*) = \left(\frac{g_j}{\sqrt{a_{jj}}}\right)$$

I ran into this when moving from Gaussian to MOPAC, MOPAC parameters vary widely in magnitude

New Issue

Trapped in local minimum?

- $\blacktriangleright~\gamma$ should be a monotonically decreasing function of λ
- ▶ Seems to violate this when stuck or converged ($\gamma \approx 90^\circ$), so just break the loop

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●