Linear and Non-Linear Optimization

Brent R. Westbrook

March 2, 2022

Linear Regression

Simple Example

x	y
0.0	2.3
1.0	3.4
2.0	7.6
3.0	8.1
4.0	9.4
5.0	13.6
6.0	14.5
7.0	15.9
8.0	18.6
9.0	21.7
10.0	21.8

Linear Regression

Simple Example

x	y
0.0	2.3
1.0	3.4
2.0	7.6
3.0	8.1
4.0	9.4
5.0	13.6
6.0	14.5
7.0	15.9
8.0	18.6
9.0	21.7
10.0	21.8

Linear Regression

How does it work?

Black box

$$
\begin{aligned}
& z=\text { np.polyfit }(x s, y s, 1) \\
& \# \Rightarrow[2.042 .23]
\end{aligned}
$$

Linear Regression

How does it work?

Black box

$$
\begin{aligned}
& z=\text { np.polyfit }(x s, y s, 1) \\
& \#=[2.042 .23]
\end{aligned}
$$

Solve

$$
A x=b
$$

for matrix A and vectors x and b

Two Cases

Exact solution

System of Equations

$$
\begin{aligned}
x+4 y & =2 \\
2 x+5 y & =-2
\end{aligned}
$$

Two Cases

Exact solution

System of Equations

$$
\begin{gathered}
x+4 y=2 \\
2 x+5 y=-2
\end{gathered}
$$

Matrix Form

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

Two Cases

Exact solution

System of Equations

$$
\begin{aligned}
x+4 y & =2 \\
2 x+5 y & =-2
\end{aligned}
$$

Matrix Form

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

Code
import numpy as np
$A=n p \cdot \operatorname{array}([1,4,2,5])$. reshape (2, 2)
$b=n p \cdot \operatorname{array}([2,-2])$
soln $=$ np.linalg. solve(A, b)
$\#=>[-6,2]$

Two Cases

No exact solution

Idea
Instead of solving $A x=b$ exactly, minimize $\|A x-b\|$

Two Cases

No exact solution

Idea
Instead of solving $A x=b$ exactly, minimize $\|A x-b\|$

Equation of a line
$y=m x+b$
Matrix version

$$
\left[\begin{array}{ll}
x & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]=y
$$

Two Cases

Back to the trend line
import numpy as np

$$
\begin{aligned}
& x=[\\
& 0.0,1.0,2.0, \\
& 3.0,4.0,5.0, \\
& 6.0,7.0,8.0, \\
& 9.0,10.0, \\
&] \\
& \text { ones }=[1.0 \text { for } \mathrm{i} \text { in } \mathrm{x}] \\
& \mathrm{A}=\mathrm{np} . \operatorname{stack}((\mathrm{x}, \text { ones })) . \text { transpose }() \\
& \mathrm{y}=[\\
& 2.3,3.4,7.6, \\
& 8.1,9.4,13.6, \\
& 14.5,15.9,18.6, \\
& 21.7,21.8, \\
&] \\
& \text { soln }=\text { np. linalg. Istsq }(A, y) \\
& \text { Solution } \\
& {[2.04,2.23], \text { same as before }}
\end{aligned}
$$

Why does this matter?

Why does this matter?

Generalization!

Why does this matter?

Generalization!

- Already seen exact vs least-squares solution
- more rows in A
- Extends to more variables
- more columns in A
- Extends to polynomials

Why does this matter?

Generalization!

- Already seen exact vs least-squares solution
- more rows in A
- Extends to more variables
- more columns in A
- Extends to polynomials

Polynomial regression

$$
A=\left[\begin{array}{ccccc}
x_{1}^{m} & \ldots & x_{1}^{2} & x_{1} & 1 \\
x_{2}^{m} & \ldots & x_{2}^{2} & x_{2} & 1 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
x_{n}^{m} & \ldots & x_{n}^{2} & x_{n} & 1
\end{array}\right]
$$

Each column has a different power of x in addition to coefficient

ANPASS is just polynomial regression

QFF Equation

$$
V=\frac{1}{2} \sum_{i j} F_{i j} \Delta_{i} \Delta_{j}+\frac{1}{6} \sum_{i j k} F_{i j k} \Delta_{i} \Delta_{j} \Delta_{k}+\frac{1}{24} \sum_{i j k l} F_{i j k l} \Delta_{i} \Delta_{j} \Delta_{k} \Delta_{l}
$$

ANPASS is just polynomial regression

QFF Equation
$V=\frac{1}{2} \sum_{i j} F_{i j} \Delta_{i} \Delta_{j}+\frac{1}{6} \sum_{i j k} F_{i j k} \Delta_{i} \Delta_{j} \Delta_{k}+\frac{1}{24} \sum_{i j k l} F_{i j k l} \Delta_{i} \Delta_{j} \Delta_{k} \Delta_{l}$

Matrix Version

$$
X F=V
$$

- V is a vector of energies
- F is a vector of force constants
- X is ... a little more complicated

Matrix form for ANPASS problem

$$
x_{i k}=\prod_{j} x_{i j}^{e_{i k}}
$$

where $x_{i j}$ is the jth (horizontal) component of the ith (vertical) displacement

Sample displacments

$$
\begin{array}{rrrr}
-0.00500000 & -0.00500000 & -0.01000000 & 0.000128387078 \\
-0.00500000 & -0.00500000 & 0.00000000 & 0.000027809414 \\
-0.00500000 & -0.00500000 & 0.01000000 & 0.000128387078 \\
-0.00500000 & -0.01000000 & 0.00000000 & 0.000035977201
\end{array}
$$

and $e_{j k}$ is the jth (row) and kth (column) exponent found at the bottom of the ANPASS input file

Sample exponents

0	1	0	2	1	0	0	3	2	1	0	1	0
0	0	1	0	1	2	0	0	1	2	3	0	1
0	0	0	0	0	0	2	0	0	0	0	2	2

Solving the Problem

Basic version
Just solve like we saw before:

$$
X F=V
$$

Solving the Problem

Basic version Just solve like we saw before:

$$
X F=V
$$

Actually solve

$$
F=\left(X^{\top} X\right)^{-1} X^{\top} V
$$

This gives a safer solution than inverting X directly, but the idea is the same

Why this is important

- Matrix formulation let me rewrite ANPASS with more than 20x speedup
- Very useful piece of math

What if the relationships aren't linear?

Non-Linear Least Squares

Goal

" $[T]$ o fit a set of observations with a model that is non-linear in the unknown parameters"

Problem Statement

- Have some function, $f(x, \beta)$, where x is some input and β is a set of parameters.
- Also have a set of "true" values y
- Minimize their difference $y-f(\beta)$

Non-Linear Least Squares

Gauss-Newton Method

$$
\left(J^{\top} \mathrm{J}\right) \delta=J^{\top}[y-\mathrm{f}(\beta)]
$$

where

$$
J=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial \beta_{1}} & \cdots & \frac{\partial f_{1}}{\partial \beta_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial \beta_{1}} & \cdots & \frac{\partial f_{m}}{\partial \beta_{n}}
\end{array}\right]
$$

and δ is the next step in the parameters β

Non-Linear Least Squares

Gauss-Newton Method

$$
\left(J^{\top} \mathrm{J}\right) \delta=J^{\top}[y-\mathrm{f}(\beta)]
$$

where

$$
J=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial \beta_{1}} & \cdots & \frac{\partial f_{1}}{\partial \beta_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial \beta_{1}} & \cdots & \frac{\partial f_{m}}{\partial \beta_{n}}
\end{array}\right]
$$

and δ is the next step in the parameters β

- Works okay, but can fail to converge

Non-Linear Least Squares

Gradient Methods

$$
\delta=-\left(\frac{\partial \Phi}{\partial \beta_{1}}, \frac{\partial \Phi}{\partial \beta_{2}}, \ldots, \frac{\partial \Phi}{\partial \beta_{n}},\right)^{\top}
$$

Just step in the direction of the gradient

Non-Linear Least Squares

Gradient Methods

$$
\delta=-\left(\frac{\partial \Phi}{\partial \beta_{1}}, \frac{\partial \Phi}{\partial \beta_{2}}, \ldots, \frac{\partial \Phi}{\partial \beta_{n}},\right)^{\top}
$$

Just step in the direction of the gradient

- Typically converges, but very slowly

Non-Linear Least Squares

Levenberg-Marquardt

General Appearance

$$
\left(\mathrm{J}^{\top} \mathrm{J}+\lambda \mathrm{I}\right) \delta=\mathrm{J}^{\top}[\mathrm{y}-\mathrm{f}(\beta)]
$$

Introduces the parameter λ that controls the interpolation between Gauss-Newton and gradient descent

Non-Linear Least Squares

Levenberg-Marquardt

General Appearance

$$
\left(J^{\top} J+\lambda I\right) \delta=J^{\top}[y-f(\beta)]
$$

Introduces the parameter λ that controls the interpolation between Gauss-Newton and gradient descent

Basic steps

- Compute J with finite differences
- Solve for δ

Levenberg-Marquardt

Refinements

Problem: Gauss-Newton when going well, gradient otherwise

- Introduce the parameter $\nu>1$
- Let Φ be the norm or measure to minimize and $\Phi^{(r)}$ be the current value
- Compute $\Phi(\lambda)$ and $\Phi(\lambda / \nu)$

1. If $\Phi(\lambda / \nu) \leq \Phi^{(r)}$, let $\lambda=\lambda / \nu$
2. If $\Phi(\lambda / \nu)>\Phi^{(r)}$, and $\Phi(\lambda) \leq \Phi^{(r)}$, let $\lambda=\lambda$
3. If $\Phi(\lambda / \nu)>\Phi^{(r)}$, and $\Phi(\lambda)>\Phi^{(r)}$, increase λ by ν until for some smallest $w, \Phi\left(\lambda \nu^{w}\right) \leq \Phi^{(r)}$

Levenberg-Marquardt

Refinements

Problem: Gauss-Newton when going well, gradient otherwise

- Introduce the parameter $\nu>1$
- Let Φ be the norm or measure to minimize and $\Phi^{(r)}$ be the current value
- Compute $\Phi(\lambda)$ and $\Phi(\lambda / \nu)$

1. If $\Phi(\lambda / \nu) \leq \Phi^{(r)}$, let $\lambda=\lambda / \nu$
2. If $\Phi(\lambda / \nu)>\Phi^{(r)}$, and $\Phi(\lambda) \leq \Phi^{(r)}$, let $\lambda=\lambda$
3. If $\Phi(\lambda / \nu)>\Phi^{(r)}$, and $\Phi(\lambda)>\Phi^{(r)}$, increase λ by ν until for some smallest $w, \Phi\left(\lambda \nu^{w}\right) \leq \Phi^{(r)}$

What if λ gets unreasonably large?

Levenberg-Marquardt

Refinements

Modify case (3)
Instead of taking step δ, take step $K \delta$, where K is made smaller until $\Phi \leq \Phi^{(r)}$

Levenberg-Marquardt

Refinements

Modify case (3)
Instead of taking step δ, take step $K \delta$, where K is made smaller until $\Phi \leq \Phi{ }^{(r)}$

When should you do this? (part I had left out)

Levenberg-Marquardt

Refinements

Modify case (3)
Instead of taking step δ, take step $K \delta$, where K is made smaller until $\Phi \leq \Phi^{(r)}$

When should you do this? (part I had left out)

Angle, γ, between the step and gradient

$$
\gamma=\operatorname{acos} \frac{\delta^{\top} \mathrm{g}}{(\|\delta\|)(\|g\|)}
$$

When $\gamma<\frac{\pi}{4}$

Levenberg-Marquardt

Refinements

Problem: Gradient methods are not scale invariant
Transform JTJ (A) into A*

$$
\mathrm{A}^{*}=\left(a_{i j}^{*}\right)=\left(\frac{a_{i j}}{\sqrt{a_{i j}} \sqrt{a_{j j}}}\right)
$$

and $J^{\top}[y-f(\beta)]=g$ into g^{*} :

$$
\mathrm{g}^{*}=\left(g_{j}^{*}\right)=\left(\frac{g_{j}}{\sqrt{a_{j j}}}\right)
$$

Levenberg-Marquardt

Refinements

Problem: Gradient methods are not scale invariant
Transform JTJ (A) into A*

$$
\mathrm{A}^{*}=\left(a_{i j}^{*}\right)=\left(\frac{a_{i j}}{\sqrt{a_{i i}} \sqrt{a_{j j}}}\right)
$$

and $J^{\top}[y-f(\beta)]=g$ into g^{*} :

$$
\mathrm{g}^{*}=\left(g_{j}^{*}\right)=\left(\frac{g_{j}}{\sqrt{a_{j j}}}\right)
$$

I ran into this when moving from Gaussian to MOPAC, MOPAC parameters vary widely in magnitude

Levenberg-Marquardt

New Issue

Trapped in local minimum?

- γ should be a monotonically decreasing function of λ
- Seems to violate this when stuck or converged $\left(\gamma \approx 90^{\circ}\right)$, so just break the loop

