
Linear and Non-Linear Optimization

Brent R. Westbrook

March 2, 2022

Linear Regression
Simple Example

x y
0.0 2.3
1.0 3.4
2.0 7.6
3.0 8.1
4.0 9.4
5.0 13.6
6.0 14.5
7.0 15.9
8.0 18.6
9.0 21.7

10.0 21.8

Linear Regression
Simple Example

x y
0.0 2.3
1.0 3.4
2.0 7.6
3.0 8.1
4.0 9.4
5.0 13.6
6.0 14.5
7.0 15.9
8.0 18.6
9.0 21.7

10.0 21.8

Linear Regression
How does it work?

Black box

z = np . p o l y f i t (xs , ys , 1)
=> [2 . 0 4 2 . 2 3]

Linear Regression
How does it work?

Black box

z = np . p o l y f i t (xs , ys , 1)
=> [2 . 0 4 2 . 2 3]

Math
Solve

Ax = b

for matrix A and vectors x and b

Two Cases
Exact solution

System of Equations
x + 4y = 2

2x + 5y = −2

Matrix Form
[
1 4
2 5

] [
x
y

]
=

[
2
−2

]

Code

import numpy as np

A = np . a r r a y ([1 , 4 , 2 , 5]) . r e shape (2 , 2)
b = np . a r r a y ([2 , −2])
s o l n = np . l i n a l g . s o l v e (A, b)
=> [−6 , 2]

Two Cases
Exact solution

System of Equations
x + 4y = 2

2x + 5y = −2

Matrix Form
[
1 4
2 5

] [
x
y

]
=

[
2
−2

]

Code

import numpy as np

A = np . a r r a y ([1 , 4 , 2 , 5]) . r e shape (2 , 2)
b = np . a r r a y ([2 , −2])
s o l n = np . l i n a l g . s o l v e (A, b)
=> [−6 , 2]

Two Cases
Exact solution

System of Equations
x + 4y = 2

2x + 5y = −2

Matrix Form
[
1 4
2 5

] [
x
y

]
=

[
2
−2

]

Code

import numpy as np

A = np . a r r a y ([1 , 4 , 2 , 5]) . r e shape (2 , 2)
b = np . a r r a y ([2 , −2])
s o l n = np . l i n a l g . s o l v e (A, b)
=> [−6 , 2]

Two Cases
No exact solution

Idea
Instead of solving Ax = b exactly,
minimize ||Ax − b||

Two Cases
No exact solution

Idea
Instead of solving Ax = b exactly,
minimize ||Ax − b||

Equation of a line
y = mx + b

Matrix version

[
x 1

] [m
b

]
= y

Two Cases
No exact solution

Back to the trend line



0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1



[
m
b

]
=



2.3
3.4
7.6
8.1
9.4
13.6
14.5
15.9
18.6
21.7
21.8



import numpy as np

x = [
0 . 0 , 1 . 0 , 2 . 0 ,
3 . 0 , 4 . 0 , 5 . 0 ,
6 . 0 , 7 . 0 , 8 . 0 ,
9 . 0 , 10 . 0 ,

]
ones = [1 . 0 f o r i i n x]
A = np . s t a c k ((x , ones)) . t r a n s p o s e ()
y = [

2 . 3 , 3 . 4 , 7 . 6 ,
8 . 1 , 9 . 4 , 13 . 6 ,
14 . 5 , 15 . 9 , 18 . 6 ,
21 . 7 , 21 . 8 ,

]
s o l n = np . l i n a l g . l s t s q (A, y)

Solution
[2.04, 2.23], same as before

Why does this matter?

Why does this matter?

Generalization!

Why does this matter?

Generalization!
▶ Already seen exact vs least-squares solution

▶ more rows in A
▶ Extends to more variables

▶ more columns in A

▶ Extends to polynomials

Why does this matter?

Generalization!
▶ Already seen exact vs least-squares solution

▶ more rows in A
▶ Extends to more variables

▶ more columns in A

▶ Extends to polynomials

Polynomial regression

A =


xm1 . . . x2

1 x1 1
xm2 . . . x2

2 x2 1
...

. . .
...

...
...

xmn . . . x2
n xn 1


Each column has a different power of x in addition to coefficient

ANPASS is just polynomial regression

QFF Equation

V =
1
2

∑
ij

Fij∆i∆j +
1
6

∑
ijk

Fijk∆i∆j∆k +
1
24

∑
ijkl

Fijkl∆i∆j∆k∆l

ANPASS is just polynomial regression

QFF Equation

V =
1
2

∑
ij

Fij∆i∆j +
1
6

∑
ijk

Fijk∆i∆j∆k +
1
24

∑
ijkl

Fijkl∆i∆j∆k∆l

Matrix Version

XF = V

▶ V is a vector of energies
▶ F is a vector of force constants
▶ X is ... a little more complicated

Matrix form for ANPASS problem

Xik =
∏
j

x
ejk
ij

where xij is the jth (horizontal) component of the ith (vertical)
displacement

Sample displacments
−0.00500000 −0.00500000 −0.01000000 0.000128387078
−0.00500000 −0.00500000 0.00000000 0.000027809414
−0.00500000 −0.00500000 0.01000000 0.000128387078
−0.00500000 −0.01000000 0.00000000 0.000035977201

and ejk is the jth (row) and kth (column) exponent found at the
bottom of the ANPASS input file

Sample exponents
0 1 0 2 1 0 0 3 2 1 0 1 0
0 0 1 0 1 2 0 0 1 2 3 0 1
0 0 0 0 0 0 2 0 0 0 0 2 2

Solving the Problem

Basic version
Just solve like we saw before:

XF = V

Wikipedia, Polynomial regression

Solving the Problem

Basic version
Just solve like we saw before:

XF = V

Actually solve

F = (X ⊺X)−1X ⊺V

This gives a safer solution than inverting X directly, but the idea is
the same

Wikipedia, Polynomial regression

Why this is important

▶ Matrix formulation let me rewrite ANPASS with more than
20x speedup

▶ Very useful piece of math

What if the relationships aren’t linear?
Non-Linear Least Squares

Goal
“[T]o fit a set of observations with a model that is non-linear in the
unknown parameters”

Problem Statement
▶ Have some function, f (x , β), where x is some input and β is a

set of parameters.

▶ Also have a set of “true” values y

▶ Minimize their difference y − f (β)

Wikipedia, Non-linear least squares

Non-Linear Least Squares
Gauss-Newton Method

(J⊤J)δ = J⊤[y − f(β)]

where

J =


∂f1
∂β1

· · · ∂f1
∂βn

...
. . .

...
∂fm
∂β1

· · · ∂fm
∂βn



and δ is the next step in the parameters β

▶ Works okay, but can fail to converge

Non-Linear Least Squares
Gauss-Newton Method

(J⊤J)δ = J⊤[y − f(β)]

where

J =


∂f1
∂β1

· · · ∂f1
∂βn

...
. . .

...
∂fm
∂β1

· · · ∂fm
∂βn



and δ is the next step in the parameters β

▶ Works okay, but can fail to converge

Non-Linear Least Squares
Gradient Methods

δ = −
(
∂Φ

∂β1
,
∂Φ

∂β2
, . . . ,

∂Φ

∂βn
,

)⊺

Just step in the direction of the gradient

▶ Typically converges, but very slowly

Non-Linear Least Squares
Gradient Methods

δ = −
(
∂Φ

∂β1
,
∂Φ

∂β2
, . . . ,

∂Φ

∂βn
,

)⊺

Just step in the direction of the gradient

▶ Typically converges, but very slowly

Non-Linear Least Squares
Levenberg-Marquardt

General Appearance

(J⊤J + λI)δ = J⊤[y − f(β)]

Introduces the parameter λ that controls the interpolation between
Gauss-Newton and gradient descent

Basic steps
▶ Compute J with finite differences
▶ Solve for δ

Non-Linear Least Squares
Levenberg-Marquardt

General Appearance

(J⊤J + λI)δ = J⊤[y − f(β)]

Introduces the parameter λ that controls the interpolation between
Gauss-Newton and gradient descent

Basic steps
▶ Compute J with finite differences
▶ Solve for δ

Levenberg-Marquardt
Refinements

Problem: Gauss-Newton when going well, gradient otherwise
▶ Introduce the parameter ν > 1

▶ Let Φ be the norm or measure to minimize and Φ(r) be the
current value

▶ Compute Φ(λ) and Φ(λ/ν)

1. If Φ(λ/ν) ≤ Φ(r), letλ = λ/ν

2. If Φ(λ/ν) > Φ(r), and Φ(λ) ≤ Φ(r), let λ = λ

3. If Φ(λ/ν) > Φ(r), and Φ(λ) > Φ(r), increase λ by ν until for
some smallest w , Φ(λνw) ≤ Φ(r)

What if λ gets unreasonably large?

Levenberg-Marquardt
Refinements

Problem: Gauss-Newton when going well, gradient otherwise
▶ Introduce the parameter ν > 1

▶ Let Φ be the norm or measure to minimize and Φ(r) be the
current value

▶ Compute Φ(λ) and Φ(λ/ν)

1. If Φ(λ/ν) ≤ Φ(r), letλ = λ/ν

2. If Φ(λ/ν) > Φ(r), and Φ(λ) ≤ Φ(r), let λ = λ

3. If Φ(λ/ν) > Φ(r), and Φ(λ) > Φ(r), increase λ by ν until for
some smallest w , Φ(λνw) ≤ Φ(r)

What if λ gets unreasonably large?

Levenberg-Marquardt
Refinements

Modify case (3)
Instead of taking step δ, take step Kδ, where K is made smaller
until Φ ≤ Φ(r)

When should you do this? (part I had left out)

Angle, γ, between the step and gradient

γ = acos
δ⊺g

(||δ||)(||g||)
When γ < π

4

Levenberg-Marquardt
Refinements

Modify case (3)
Instead of taking step δ, take step Kδ, where K is made smaller
until Φ ≤ Φ(r)

When should you do this? (part I had left out)

Angle, γ, between the step and gradient

γ = acos
δ⊺g

(||δ||)(||g||)
When γ < π

4

Levenberg-Marquardt
Refinements

Modify case (3)
Instead of taking step δ, take step Kδ, where K is made smaller
until Φ ≤ Φ(r)

When should you do this? (part I had left out)

Angle, γ, between the step and gradient

γ = acos
δ⊺g

(||δ||)(||g||)
When γ < π

4

Levenberg-Marquardt
Refinements

Problem: Gradient methods are not scale invariant

Transform J⊺J (A) into A∗

A∗ = (a∗ij) =

(
aij√
aii
√
ajj

)
and J⊤[y − f(β)] = g into g∗:

g∗ = (g∗
j) =

(
gj√
ajj

)

I ran into this when moving from Gaussian to MOPAC, MOPAC
parameters vary widely in magnitude

Levenberg-Marquardt
Refinements

Problem: Gradient methods are not scale invariant

Transform J⊺J (A) into A∗

A∗ = (a∗ij) =

(
aij√
aii
√
ajj

)
and J⊤[y − f(β)] = g into g∗:

g∗ = (g∗
j) =

(
gj√
ajj

)
I ran into this when moving from Gaussian to MOPAC, MOPAC
parameters vary widely in magnitude

Levenberg-Marquardt
New Issue

Trapped in local minimum?
▶ γ should be a monotonically decreasing function of λ

▶ Seems to violate this when stuck or converged (γ ≈ 90◦), so
just break the loop

	Linear Optimization
	Example: ANPASS
	Non-Linear Optimization

